ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr2 Unicode version

Theorem indstr2 9700
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
indstr2.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
indstr2.3  |-  ch
indstr2.4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
Assertion
Ref Expression
indstr2  |-  ( x  e.  NN  ->  ph )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( x, y)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 elnn1uz2 9698 . . 3  |-  ( x  e.  NN  <->  ( x  =  1  \/  x  e.  ( ZZ>= `  2 )
) )
3 indstr2.3 . . . . 5  |-  ch
4 nnnlt1 9033 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  -.  y  <  1 )
54adantl 277 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  1 )
6 breq2 4038 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
y  <  x  <->  y  <  1 ) )
76adantr 276 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  <->  y  <  1
) )
85, 7mtbird 674 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  x )
98pm2.21d 620 . . . . . . . 8  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  ->  ps )
)
109ralrimiva 2570 . . . . . . 7  |-  ( x  =  1  ->  A. y  e.  NN  ( y  < 
x  ->  ps )
)
11 pm5.5 242 . . . . . . 7  |-  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ( ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )  <->  ph ) )
1210, 11syl 14 . . . . . 6  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ph ) )
13 indstr2.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
1412, 13bitrd 188 . . . . 5  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ch )
)
153, 14mpbiri 168 . . . 4  |-  ( x  =  1  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
16 indstr2.4 . . . 4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
1715, 16jaoi 717 . . 3  |-  ( ( x  =  1  \/  x  e.  ( ZZ>= ` 
2 ) )  -> 
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph ) )
182, 17sylbi 121 . 2  |-  ( x  e.  NN  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
191, 18indstr 9684 1  |-  ( x  e.  NN  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034   ` cfv 5259   1c1 7897    < clt 8078   NNcn 9007   2c2 9058   ZZ>=cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator