ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr2 Unicode version

Theorem indstr2 9396
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
indstr2.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
indstr2.3  |-  ch
indstr2.4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
Assertion
Ref Expression
indstr2  |-  ( x  e.  NN  ->  ph )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( x, y)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 elnn1uz2 9394 . . 3  |-  ( x  e.  NN  <->  ( x  =  1  \/  x  e.  ( ZZ>= `  2 )
) )
3 indstr2.3 . . . . 5  |-  ch
4 nnnlt1 8739 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  -.  y  <  1 )
54adantl 275 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  1 )
6 breq2 3928 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
y  <  x  <->  y  <  1 ) )
76adantr 274 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  <->  y  <  1
) )
85, 7mtbird 662 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  x )
98pm2.21d 608 . . . . . . . 8  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  ->  ps )
)
109ralrimiva 2503 . . . . . . 7  |-  ( x  =  1  ->  A. y  e.  NN  ( y  < 
x  ->  ps )
)
11 pm5.5 241 . . . . . . 7  |-  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ( ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )  <->  ph ) )
1210, 11syl 14 . . . . . 6  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ph ) )
13 indstr2.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
1412, 13bitrd 187 . . . . 5  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ch )
)
153, 14mpbiri 167 . . . 4  |-  ( x  =  1  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
16 indstr2.4 . . . 4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
1715, 16jaoi 705 . . 3  |-  ( ( x  =  1  \/  x  e.  ( ZZ>= ` 
2 ) )  -> 
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph ) )
182, 17sylbi 120 . 2  |-  ( x  e.  NN  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
191, 18indstr 9381 1  |-  ( x  e.  NN  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2414   class class class wbr 3924   ` cfv 5118   1c1 7614    < clt 7793   NNcn 8713   2c2 8764   ZZ>=cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator