ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr2 Unicode version

Theorem indstr2 9804
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
indstr2.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
indstr2.3  |-  ch
indstr2.4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
Assertion
Ref Expression
indstr2  |-  ( x  e.  NN  ->  ph )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    ch( x, y)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2 elnn1uz2 9802 . . 3  |-  ( x  e.  NN  <->  ( x  =  1  \/  x  e.  ( ZZ>= `  2 )
) )
3 indstr2.3 . . . . 5  |-  ch
4 nnnlt1 9136 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  -.  y  <  1 )
54adantl 277 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  1 )
6 breq2 4087 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
y  <  x  <->  y  <  1 ) )
76adantr 276 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  <->  y  <  1
) )
85, 7mtbird 677 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  e.  NN )  ->  -.  y  <  x )
98pm2.21d 622 . . . . . . . 8  |-  ( ( x  =  1  /\  y  e.  NN )  ->  ( y  < 
x  ->  ps )
)
109ralrimiva 2603 . . . . . . 7  |-  ( x  =  1  ->  A. y  e.  NN  ( y  < 
x  ->  ps )
)
11 pm5.5 242 . . . . . . 7  |-  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ( ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )  <->  ph ) )
1210, 11syl 14 . . . . . 6  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ph ) )
13 indstr2.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
1412, 13bitrd 188 . . . . 5  |-  ( x  =  1  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ch )
)
153, 14mpbiri 168 . . . 4  |-  ( x  =  1  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
16 indstr2.4 . . . 4  |-  ( x  e.  ( ZZ>= `  2
)  ->  ( A. y  e.  NN  (
y  <  x  ->  ps )  ->  ph ) )
1715, 16jaoi 721 . . 3  |-  ( ( x  =  1  \/  x  e.  ( ZZ>= ` 
2 ) )  -> 
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph ) )
182, 17sylbi 121 . 2  |-  ( x  e.  NN  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
191, 18indstr 9788 1  |-  ( x  e.  NN  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4083   ` cfv 5318   1c1 8000    < clt 8181   NNcn 9110   2c2 9161   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator