ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin GIF version

Theorem ntrin 12665
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrin ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3337 . . . . 5 (𝐴𝐵) ⊆ 𝐴
2 clscld.1 . . . . . 6 𝑋 = 𝐽
32ntrss 12660 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
41, 3mp3an3 1315 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
543adant3 1006 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
6 inss2 3338 . . . . 5 (𝐴𝐵) ⊆ 𝐵
72ntrss 12660 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
86, 7mp3an3 1315 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
983adant2 1005 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
105, 9ssind 3341 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
11 simp1 986 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → 𝐽 ∈ Top)
12 ssinss1 3346 . . . 4 (𝐴𝑋 → (𝐴𝐵) ⊆ 𝑋)
13123ad2ant2 1008 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
142ntropn 12658 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
15143adant3 1006 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
162ntropn 12658 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽)
17163adant2 1005 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽)
18 inopn 12542 . . . 4 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ ((int‘𝐽)‘𝐵) ∈ 𝐽) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽)
1911, 15, 17, 18syl3anc 1227 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽)
20 inss1 3337 . . . . 5 (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐴)
212ntrss2 12662 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
22213adant3 1006 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
2320, 22sstrid 3148 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐴)
24 inss2 3338 . . . . 5 (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐵)
252ntrss2 12662 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵)
26253adant2 1005 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵)
2724, 26sstrid 3148 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐵)
2823, 27ssind 3341 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴𝐵))
292ssntr 12663 . . 3 (((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) ∧ ((((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽 ∧ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴𝐵))) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴𝐵)))
3011, 13, 19, 28, 29syl22anc 1228 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴𝐵)))
3110, 30eqssd 3154 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 967   = wceq 1342  wcel 2135  cin 3110  wss 3111   cuni 3783  cfv 5182  Topctop 12536  intcnt 12634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-top 12537  df-ntr 12637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator