ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin GIF version

Theorem ntrin 12293
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrin ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3296 . . . . 5 (𝐴𝐵) ⊆ 𝐴
2 clscld.1 . . . . . 6 𝑋 = 𝐽
32ntrss 12288 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
41, 3mp3an3 1304 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
543adant3 1001 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
6 inss2 3297 . . . . 5 (𝐴𝐵) ⊆ 𝐵
72ntrss 12288 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
86, 7mp3an3 1304 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
983adant2 1000 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
105, 9ssind 3300 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
11 simp1 981 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → 𝐽 ∈ Top)
12 ssinss1 3305 . . . 4 (𝐴𝑋 → (𝐴𝐵) ⊆ 𝑋)
13123ad2ant2 1003 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
142ntropn 12286 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
15143adant3 1001 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
162ntropn 12286 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽)
17163adant2 1000 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽)
18 inopn 12170 . . . 4 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ ((int‘𝐽)‘𝐵) ∈ 𝐽) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽)
1911, 15, 17, 18syl3anc 1216 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽)
20 inss1 3296 . . . . 5 (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐴)
212ntrss2 12290 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
22213adant3 1001 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
2320, 22sstrid 3108 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐴)
24 inss2 3297 . . . . 5 (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐵)
252ntrss2 12290 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵)
26253adant2 1000 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵)
2724, 26sstrid 3108 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐵)
2823, 27ssind 3300 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴𝐵))
292ssntr 12291 . . 3 (((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) ∧ ((((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽 ∧ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴𝐵))) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴𝐵)))
3011, 13, 19, 28, 29syl22anc 1217 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴𝐵)))
3110, 30eqssd 3114 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 962   = wceq 1331  wcel 1480  cin 3070  wss 3071   cuni 3736  cfv 5123  Topctop 12164  intcnt 12262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12165  df-ntr 12265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator