ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrin GIF version

Theorem ntrin 12764
Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrin ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))

Proof of Theorem ntrin
StepHypRef Expression
1 inss1 3342 . . . . 5 (𝐴𝐵) ⊆ 𝐴
2 clscld.1 . . . . . 6 𝑋 = 𝐽
32ntrss 12759 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ (𝐴𝐵) ⊆ 𝐴) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
41, 3mp3an3 1316 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
543adant3 1007 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐴))
6 inss2 3343 . . . . 5 (𝐴𝐵) ⊆ 𝐵
72ntrss 12759 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
86, 7mp3an3 1316 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
983adant2 1006 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ ((int‘𝐽)‘𝐵))
105, 9ssind 3346 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) ⊆ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
11 simp1 987 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → 𝐽 ∈ Top)
12 ssinss1 3351 . . . 4 (𝐴𝑋 → (𝐴𝐵) ⊆ 𝑋)
13123ad2ant2 1009 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
142ntropn 12757 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
15143adant3 1007 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐴) ∈ 𝐽)
162ntropn 12757 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽)
17163adant2 1006 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐵) ∈ 𝐽)
18 inopn 12641 . . . 4 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝐴) ∈ 𝐽 ∧ ((int‘𝐽)‘𝐵) ∈ 𝐽) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽)
1911, 15, 17, 18syl3anc 1228 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽)
20 inss1 3342 . . . . 5 (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐴)
212ntrss2 12761 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
22213adant3 1007 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐴) ⊆ 𝐴)
2320, 22sstrid 3153 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐴)
24 inss2 3343 . . . . 5 (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘𝐵)
252ntrss2 12761 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐵𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵)
26253adant2 1006 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘𝐵) ⊆ 𝐵)
2724, 26sstrid 3153 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ 𝐵)
2823, 27ssind 3346 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴𝐵))
292ssntr 12762 . . 3 (((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝑋) ∧ ((((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ∈ 𝐽 ∧ (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ (𝐴𝐵))) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴𝐵)))
3011, 13, 19, 28, 29syl22anc 1229 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)) ⊆ ((int‘𝐽)‘(𝐴𝐵)))
3110, 30eqssd 3159 1 ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋) → ((int‘𝐽)‘(𝐴𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  wcel 2136  cin 3115  wss 3116   cuni 3789  cfv 5188  Topctop 12635  intcnt 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-ntr 12736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator