![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opifismgmdc | GIF version |
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.) |
Ref | Expression |
---|---|
opifismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
opifismgm.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) |
opifismgmdc.dc | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → DECID 𝜓) |
opifismgm.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐵) |
opifismgm.c | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
opifismgm.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) |
Ref | Expression |
---|---|
opifismgmdc | ⊢ (𝜑 → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opifismgm.c | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
2 | opifismgm.d | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) | |
3 | opifismgmdc.dc | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → DECID 𝜓) | |
4 | 1, 2, 3 | ifcldcd 3582 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
5 | 4 | ralrimivva 2569 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
7 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | |
8 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | |
9 | opifismgm.p | . . . . 5 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) | |
10 | 9 | ovmpoelrn 6221 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
11 | 6, 7, 8, 10 | syl3anc 1248 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
12 | 11 | ralrimivva 2569 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
13 | opifismgm.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐵) | |
14 | opifismgm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
15 | eqid 2187 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
16 | 14, 15 | ismgmn0 12795 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
17 | 16 | exlimiv 1608 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
18 | 13, 17 | syl 14 | . 2 ⊢ (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
19 | 12, 18 | mpbird 167 | 1 ⊢ (𝜑 → 𝑀 ∈ Mgm) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1363 ∃wex 1502 ∈ wcel 2158 ∀wral 2465 ifcif 3546 ‘cfv 5228 (class class class)co 5888 ∈ cmpo 5890 Basecbs 12475 +gcplusg 12550 Mgmcmgm 12791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-inn 8933 df-2 8991 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-mgm 12793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |