| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opifismgmdc | GIF version | ||
| Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.) |
| Ref | Expression |
|---|---|
| opifismgm.b | ⊢ 𝐵 = (Base‘𝑀) |
| opifismgm.p | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) |
| opifismgmdc.dc | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → DECID 𝜓) |
| opifismgm.m | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐵) |
| opifismgm.c | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| opifismgm.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opifismgmdc | ⊢ (𝜑 → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opifismgm.c | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) | |
| 2 | opifismgm.d | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐷 ∈ 𝐵) | |
| 3 | opifismgmdc.dc | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → DECID 𝜓) | |
| 4 | 1, 2, 3 | ifcldcd 3640 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
| 5 | 4 | ralrimivva 2612 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵) |
| 7 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | |
| 8 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | |
| 9 | opifismgm.p | . . . . 5 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ if(𝜓, 𝐶, 𝐷)) | |
| 10 | 9 | ovmpoelrn 6353 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 11 | 6, 7, 8, 10 | syl3anc 1271 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 12 | 11 | ralrimivva 2612 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
| 13 | opifismgm.m | . . 3 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐵) | |
| 14 | opifismgm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 15 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 16 | 14, 15 | ismgmn0 13391 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 17 | 16 | exlimiv 1644 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 18 | 13, 17 | syl 14 | . 2 ⊢ (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
| 19 | 12, 18 | mpbird 167 | 1 ⊢ (𝜑 → 𝑀 ∈ Mgm) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 ifcif 3602 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 Basecbs 13032 +gcplusg 13110 Mgmcmgm 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mgm 13389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |