ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opifismgmdc GIF version

Theorem opifismgmdc 13404
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b 𝐵 = (Base‘𝑀)
opifismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))
opifismgmdc.dc ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → DECID 𝜓)
opifismgm.m (𝜑 → ∃𝑥 𝑥𝐵)
opifismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
opifismgm.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)
Assertion
Ref Expression
opifismgmdc (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opifismgmdc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
2 opifismgm.d . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)
3 opifismgmdc.dc . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → DECID 𝜓)
41, 2, 3ifcldcd 3640 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
54ralrimivva 2612 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
65adantr 276 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵)
7 simprl 529 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
8 simprr 531 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
9 opifismgm.p . . . . 5 (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))
109ovmpoelrn 6353 . . . 4 ((∀𝑥𝐵𝑦𝐵 if(𝜓, 𝐶, 𝐷) ∈ 𝐵𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
116, 7, 8, 10syl3anc 1271 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
1211ralrimivva 2612 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)
13 opifismgm.m . . 3 (𝜑 → ∃𝑥 𝑥𝐵)
14 opifismgm.b . . . . 5 𝐵 = (Base‘𝑀)
15 eqid 2229 . . . . 5 (+g𝑀) = (+g𝑀)
1614, 15ismgmn0 13391 . . . 4 (𝑥𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1716exlimiv 1644 . . 3 (∃𝑥 𝑥𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1813, 17syl 14 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
1912, 18mpbird 167 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wral 2508  ifcif 3602  cfv 5318  (class class class)co 6001  cmpo 6003  Basecbs 13032  +gcplusg 13110  Mgmcmgm 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator