ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfvalg Unicode version

Theorem plusfvalg 13006
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusfvalg  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+^  Y )  =  ( X  .+  Y ) )

Proof of Theorem plusfvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4  |-  B  =  ( Base `  G
)
2 plusffval.2 . . . 4  |-  .+  =  ( +g  `  G )
3 plusffval.3 . . . 4  |-  .+^  =  ( +f `  G
)
41, 2, 3plusffvalg 13005 . . 3  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
543ad2ant1 1020 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  -> 
.+^  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
6 oveq12 5931 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .+  y
)  =  ( X 
.+  Y ) )
76adantl 277 . 2  |-  ( ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .+  y
)  =  ( X 
.+  Y ) )
8 simp2 1000 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
9 simp3 1001 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
10 plusgslid 12790 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12705 . . . . 5  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
122, 11eqeltrid 2283 . . . 4  |-  ( G  e.  V  ->  .+  e.  _V )
13123ad2ant1 1020 . . 3  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  .+  e.  _V )
14 ovexg 5956 . . 3  |-  ( ( X  e.  B  /\  .+  e.  _V  /\  Y  e.  B )  ->  ( X  .+  Y )  e. 
_V )
158, 13, 9, 14syl3anc 1249 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  _V )
165, 7, 8, 9, 15ovmpod 6050 1  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+^  Y )  =  ( X  .+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   Basecbs 12678   +g cplusg 12755   +fcplusf 12996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-plusf 12998
This theorem is referenced by:  mndpfo  13079  lmodfopne  13882
  Copyright terms: Public domain W3C validator