ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfvalg Unicode version

Theorem plusfvalg 13195
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1  |-  B  =  ( Base `  G
)
plusffval.2  |-  .+  =  ( +g  `  G )
plusffval.3  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusfvalg  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+^  Y )  =  ( X  .+  Y ) )

Proof of Theorem plusfvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4  |-  B  =  ( Base `  G
)
2 plusffval.2 . . . 4  |-  .+  =  ( +g  `  G )
3 plusffval.3 . . . 4  |-  .+^  =  ( +f `  G
)
41, 2, 3plusffvalg 13194 . . 3  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x  .+  y ) ) )
543ad2ant1 1021 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  -> 
.+^  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  y ) ) )
6 oveq12 5953 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .+  y
)  =  ( X 
.+  Y ) )
76adantl 277 . 2  |-  ( ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .+  y
)  =  ( X 
.+  Y ) )
8 simp2 1001 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
9 simp3 1002 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
10 plusgslid 12944 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12859 . . . . 5  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
122, 11eqeltrid 2292 . . . 4  |-  ( G  e.  V  ->  .+  e.  _V )
13123ad2ant1 1021 . . 3  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  .+  e.  _V )
14 ovexg 5978 . . 3  |-  ( ( X  e.  B  /\  .+  e.  _V  /\  Y  e.  B )  ->  ( X  .+  Y )  e. 
_V )
158, 13, 9, 14syl3anc 1250 . 2  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  _V )
165, 7, 8, 9, 15ovmpod 6073 1  |-  ( ( G  e.  V  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+^  Y )  =  ( X  .+  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   Basecbs 12832   +g cplusg 12909   +fcplusf 13185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-plusf 13187
This theorem is referenced by:  mndpfo  13270  lmodfopne  14088
  Copyright terms: Public domain W3C validator