Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > plusfvalg | Unicode version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | |
plusffval.2 | |
plusffval.3 |
Ref | Expression |
---|---|
plusfvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusffval.1 | . . . 4 | |
2 | plusffval.2 | . . . 4 | |
3 | plusffval.3 | . . . 4 | |
4 | 1, 2, 3 | plusffvalg 12645 | . . 3 |
5 | 4 | 3ad2ant1 1018 | . 2 |
6 | oveq12 5874 | . . 3 | |
7 | 6 | adantl 277 | . 2 |
8 | simp2 998 | . 2 | |
9 | simp3 999 | . 2 | |
10 | plusgslid 12524 | . . . . . 6 Slot | |
11 | 10 | slotex 12454 | . . . . 5 |
12 | 2, 11 | eqeltrid 2262 | . . . 4 |
13 | 12 | 3ad2ant1 1018 | . . 3 |
14 | ovexg 5899 | . . 3 | |
15 | 8, 13, 9, 14 | syl3anc 1238 | . 2 |
16 | 5, 7, 8, 9, 15 | ovmpod 5992 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 cvv 2735 cfv 5208 (class class class)co 5865 cmpo 5867 cbs 12427 cplusg 12491 cplusf 12636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-plusf 12638 |
This theorem is referenced by: mndpfo 12703 |
Copyright terms: Public domain | W3C validator |