| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusfeqg | GIF version | ||
| Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffval.2 | ⊢ + = (+g‘𝐺) |
| plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusfeqg | ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → ⨣ = + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | plusffval.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | plusffval.3 | . . . 4 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 4 | 1, 2, 3 | plusffvalg 13395 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 6 | fnovim 6113 | . . 3 ⊢ ( + Fn (𝐵 × 𝐵) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | |
| 7 | 6 | adantl 277 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 8 | 5, 7 | eqtr4d 2265 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → ⨣ = + ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 × cxp 4717 Fn wfn 5313 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 Basecbs 13032 +gcplusg 13110 +𝑓cplusf 13386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-plusf 13388 |
| This theorem is referenced by: mgmb1mgm1 13401 mndfo 13472 cnfldplusf 14538 |
| Copyright terms: Public domain | W3C validator |