ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfeqg GIF version

Theorem plusfeqg 12789
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusfeqg ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )

Proof of Theorem plusfeqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4 𝐵 = (Base‘𝐺)
2 plusffval.2 . . . 4 + = (+g𝐺)
3 plusffval.3 . . . 4 = (+𝑓𝐺)
41, 2, 3plusffvalg 12787 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
54adantr 276 . 2 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
6 fnovim 5986 . . 3 ( + Fn (𝐵 × 𝐵) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
76adantl 277 . 2 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
85, 7eqtr4d 2213 1 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   × cxp 4626   Fn wfn 5213  cfv 5218  (class class class)co 5878  cmpo 5880  Basecbs 12465  +gcplusg 12539  +𝑓cplusf 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-inn 8923  df-ndx 12468  df-slot 12469  df-base 12471  df-plusf 12780
This theorem is referenced by:  mgmb1mgm1  12793  mndfo  12846  cnfldplusf  13608
  Copyright terms: Public domain W3C validator