ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfeqg GIF version

Theorem plusfeqg 13311
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusfeqg ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )

Proof of Theorem plusfeqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4 𝐵 = (Base‘𝐺)
2 plusffval.2 . . . 4 + = (+g𝐺)
3 plusffval.3 . . . 4 = (+𝑓𝐺)
41, 2, 3plusffvalg 13309 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
54adantr 276 . 2 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
6 fnovim 6077 . . 3 ( + Fn (𝐵 × 𝐵) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
76adantl 277 . 2 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
85, 7eqtr4d 2243 1 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178   × cxp 4691   Fn wfn 5285  cfv 5290  (class class class)co 5967  cmpo 5969  Basecbs 12947  +gcplusg 13024  +𝑓cplusf 13300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-plusf 13302
This theorem is referenced by:  mgmb1mgm1  13315  mndfo  13386  cnfldplusf  14451
  Copyright terms: Public domain W3C validator