ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusfeqg GIF version

Theorem plusfeqg 12595
Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusfeqg ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )

Proof of Theorem plusfeqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusffval.1 . . . 4 𝐵 = (Base‘𝐺)
2 plusffval.2 . . . 4 + = (+g𝐺)
3 plusffval.3 . . . 4 = (+𝑓𝐺)
41, 2, 3plusffvalg 12593 . . 3 (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
54adantr 274 . 2 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
6 fnovim 5950 . . 3 ( + Fn (𝐵 × 𝐵) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
76adantl 275 . 2 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → + = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
85, 7eqtr4d 2201 1 ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   × cxp 4602   Fn wfn 5183  cfv 5188  (class class class)co 5842  cmpo 5844  Basecbs 12394  +gcplusg 12457  +𝑓cplusf 12584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-plusf 12586
This theorem is referenced by:  mgmb1mgm1  12599
  Copyright terms: Public domain W3C validator