| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusfeqg | GIF version | ||
| Description: If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffval.2 | ⊢ + = (+g‘𝐺) |
| plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusfeqg | ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → ⨣ = + ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusffval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | plusffval.2 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 3 | plusffval.3 | . . . 4 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 4 | 1, 2, 3 | plusffvalg 13309 | . . 3 ⊢ (𝐺 ∈ 𝑉 → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 6 | fnovim 6077 | . . 3 ⊢ ( + Fn (𝐵 × 𝐵) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) | |
| 7 | 6 | adantl 277 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦))) |
| 8 | 5, 7 | eqtr4d 2243 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ + Fn (𝐵 × 𝐵)) → ⨣ = + ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 × cxp 4691 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 Basecbs 12947 +gcplusg 13024 +𝑓cplusf 13300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-plusf 13302 |
| This theorem is referenced by: mgmb1mgm1 13315 mndfo 13386 cnfldplusf 14451 |
| Copyright terms: Public domain | W3C validator |