| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1sgm2ppw | Unicode version | ||
| Description: The sum of the divisors
of |
| Ref | Expression |
|---|---|
| 1sgm2ppw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8080 |
. . 3
| |
| 2 | 2prm 12635 |
. . 3
| |
| 3 | nnm1nn0 9398 |
. . 3
| |
| 4 | sgmppw 15651 |
. . 3
| |
| 5 | 1, 2, 3, 4 | mp3an12i 1375 |
. 2
|
| 6 | 2rp 9842 |
. . . . . 6
| |
| 7 | rpcxp1 15558 |
. . . . . 6
| |
| 8 | 6, 7 | mp1i 10 |
. . . . 5
|
| 9 | 8 | oveq1d 6009 |
. . . 4
|
| 10 | 9 | sumeq2i 11861 |
. . 3
|
| 11 | 2cn 9169 |
. . . . 5
| |
| 12 | 11 | a1i 9 |
. . . 4
|
| 13 | 1ap2 9306 |
. . . . . 6
| |
| 14 | apsym 8741 |
. . . . . . 7
| |
| 15 | 1, 11, 14 | mp2an 426 |
. . . . . 6
|
| 16 | 13, 15 | mpbi 145 |
. . . . 5
|
| 17 | 16 | a1i 9 |
. . . 4
|
| 18 | nnnn0 9364 |
. . . 4
| |
| 19 | 12, 17, 18 | geoserap 12004 |
. . 3
|
| 20 | 10, 19 | eqtrid 2274 |
. 2
|
| 21 | 2nn 9260 |
. . . . . . 7
| |
| 22 | nnexpcl 10761 |
. . . . . . 7
| |
| 23 | 21, 18, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 23 | nncnd 9112 |
. . . . 5
|
| 25 | subcl 8333 |
. . . . 5
| |
| 26 | 24, 1, 25 | sylancl 413 |
. . . 4
|
| 27 | 1 | a1i 9 |
. . . 4
|
| 28 | 1ap0 8725 |
. . . . 5
| |
| 29 | 28 | a1i 9 |
. . . 4
|
| 30 | 26, 27, 29 | div2negapd 8940 |
. . 3
|
| 31 | negsubdi2 8393 |
. . . . 5
| |
| 32 | 24, 1, 31 | sylancl 413 |
. . . 4
|
| 33 | df-neg 8308 |
. . . . . 6
| |
| 34 | 0cn 8126 |
. . . . . . 7
| |
| 35 | pnpcan 8373 |
. . . . . . 7
| |
| 36 | 1, 34, 1, 35 | mp3an 1371 |
. . . . . 6
|
| 37 | 1p0e1 9214 |
. . . . . . 7
| |
| 38 | 1p1e2 9215 |
. . . . . . 7
| |
| 39 | 37, 38 | oveq12i 6006 |
. . . . . 6
|
| 40 | 33, 36, 39 | 3eqtr2i 2256 |
. . . . 5
|
| 41 | 40 | a1i 9 |
. . . 4
|
| 42 | 32, 41 | oveq12d 6012 |
. . 3
|
| 43 | 26 | div1d 8915 |
. . 3
|
| 44 | 30, 42, 43 | 3eqtr3d 2270 |
. 2
|
| 45 | 5, 20, 44 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-pre-suploc 8108 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-2o 6553 df-oadd 6556 df-er 6670 df-map 6787 df-pm 6788 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-xnn0 9421 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-ioo 10076 df-ico 10078 df-icc 10079 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-bc 10957 df-ihash 10985 df-shft 11312 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-ef 12145 df-e 12146 df-dvds 12285 df-gcd 12461 df-prm 12616 df-pc 12794 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-cn 14847 df-cnp 14848 df-tx 14912 df-cncf 15230 df-limced 15315 df-dvap 15316 df-relog 15517 df-rpcxp 15518 df-sgm 15641 |
| This theorem is referenced by: perfect1 15657 perfectlem1 15658 perfectlem2 15659 |
| Copyright terms: Public domain | W3C validator |