![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgisuc1 | GIF version |
Description: One way of describing the
value of the recursive definition generator at
a successor. There is no condition on the characteristic function 𝐹
other than 𝐹 Fn V. Given that, the resulting
expression
encompasses both the expected successor term
(𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to
the initial value 𝐴 and to limit ordinals
∪ 𝑥 ∈ 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).
If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6234. (Contributed by Jim Kingdon, 9-Jun-2019.) |
Ref | Expression |
---|---|
rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
rdgisuc1 | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgisuc1.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn V) | |
2 | rdgisuc1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | suceloni 4375 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → suc 𝐵 ∈ On) |
6 | rdgival 6231 | . . 3 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ suc 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
7 | 1, 2, 5, 6 | syl3anc 1197 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
8 | df-suc 4251 | . . . . . . 7 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
9 | iuneq1 3790 | . . . . . . 7 ⊢ (suc 𝐵 = (𝐵 ∪ {𝐵}) → ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) | |
10 | 8, 9 | ax-mp 7 | . . . . . 6 ⊢ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) |
11 | iunxun 3856 | . . . . . 6 ⊢ ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) | |
12 | 10, 11 | eqtri 2133 | . . . . 5 ⊢ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
13 | fveq2 5373 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝐵)) | |
14 | 13 | fveq2d 5377 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
15 | 14 | iunxsng 3852 | . . . . . 6 ⊢ (𝐵 ∈ On → ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
16 | 15 | uneq2d 3194 | . . . . 5 ⊢ (𝐵 ∈ On → (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
17 | 12, 16 | syl5eq 2157 | . . . 4 ⊢ (𝐵 ∈ On → ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
18 | 17 | uneq2d 3194 | . . 3 ⊢ (𝐵 ∈ On → (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
19 | 3, 18 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
20 | 7, 19 | eqtrd 2145 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1312 ∈ wcel 1461 Vcvv 2655 ∪ cun 3033 {csn 3491 ∪ ciun 3777 Oncon0 4243 suc csuc 4245 Fn wfn 5074 ‘cfv 5079 reccrdg 6218 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-recs 6154 df-irdg 6219 |
This theorem is referenced by: rdgisucinc 6234 |
Copyright terms: Public domain | W3C validator |