ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisuc1 GIF version

Theorem rdgisuc1 6451
Description: One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function 𝐹 other than 𝐹 Fn V. Given that, the resulting expression encompasses both the expected successor term (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to the initial value 𝐴 and to limit ordinals 𝑥𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6452. (Contributed by Jim Kingdon, 9-Jun-2019.)

Hypotheses
Ref Expression
rdgisuc1.1 (𝜑𝐹 Fn V)
rdgisuc1.2 (𝜑𝐴𝑉)
rdgisuc1.3 (𝜑𝐵 ∈ On)
Assertion
Ref Expression
rdgisuc1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rdgisuc1
StepHypRef Expression
1 rdgisuc1.1 . . 3 (𝜑𝐹 Fn V)
2 rdgisuc1.2 . . 3 (𝜑𝐴𝑉)
3 rdgisuc1.3 . . . 4 (𝜑𝐵 ∈ On)
4 onsuc 4538 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 14 . . 3 (𝜑 → suc 𝐵 ∈ On)
6 rdgival 6449 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉 ∧ suc 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
71, 2, 5, 6syl3anc 1249 . 2 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
8 df-suc 4407 . . . . . . 7 suc 𝐵 = (𝐵 ∪ {𝐵})
9 iuneq1 3930 . . . . . . 7 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
108, 9ax-mp 5 . . . . . 6 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥))
11 iunxun 3997 . . . . . 6 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
1210, 11eqtri 2217 . . . . 5 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
13 fveq2 5561 . . . . . . . 8 (𝑥 = 𝐵 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝐵))
1413fveq2d 5565 . . . . . . 7 (𝑥 = 𝐵 → (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1514iunxsng 3993 . . . . . 6 (𝐵 ∈ On → 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1615uneq2d 3318 . . . . 5 (𝐵 ∈ On → ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1712, 16eqtrid 2241 . . . 4 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1817uneq2d 3318 . . 3 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
193, 18syl 14 . 2 (𝜑 → (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
207, 19eqtrd 2229 1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  {csn 3623   ciun 3917  Oncon0 4399  suc csuc 4401   Fn wfn 5254  cfv 5259  reccrdg 6436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-recs 6372  df-irdg 6437
This theorem is referenced by:  rdgisucinc  6452
  Copyright terms: Public domain W3C validator