Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgisuc1 | GIF version |
Description: One way of describing the
value of the recursive definition generator at
a successor. There is no condition on the characteristic function 𝐹
other than 𝐹 Fn V. Given that, the resulting
expression
encompasses both the expected successor term
(𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to
the initial value 𝐴 and to limit ordinals
∪ 𝑥 ∈ 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).
If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6353. (Contributed by Jim Kingdon, 9-Jun-2019.) |
Ref | Expression |
---|---|
rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
rdgisuc1 | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgisuc1.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn V) | |
2 | rdgisuc1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | suceloni 4478 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → suc 𝐵 ∈ On) |
6 | rdgival 6350 | . . 3 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ suc 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
7 | 1, 2, 5, 6 | syl3anc 1228 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
8 | df-suc 4349 | . . . . . . 7 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
9 | iuneq1 3879 | . . . . . . 7 ⊢ (suc 𝐵 = (𝐵 ∪ {𝐵}) → ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) |
11 | iunxun 3945 | . . . . . 6 ⊢ ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) | |
12 | 10, 11 | eqtri 2186 | . . . . 5 ⊢ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
13 | fveq2 5486 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝐵)) | |
14 | 13 | fveq2d 5490 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
15 | 14 | iunxsng 3941 | . . . . . 6 ⊢ (𝐵 ∈ On → ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
16 | 15 | uneq2d 3276 | . . . . 5 ⊢ (𝐵 ∈ On → (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
17 | 12, 16 | syl5eq 2211 | . . . 4 ⊢ (𝐵 ∈ On → ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
18 | 17 | uneq2d 3276 | . . 3 ⊢ (𝐵 ∈ On → (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
19 | 3, 18 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
20 | 7, 19 | eqtrd 2198 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 {csn 3576 ∪ ciun 3866 Oncon0 4341 suc csuc 4343 Fn wfn 5183 ‘cfv 5188 reccrdg 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-recs 6273 df-irdg 6338 |
This theorem is referenced by: rdgisucinc 6353 |
Copyright terms: Public domain | W3C validator |