Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgisuc1 | GIF version |
Description: One way of describing the
value of the recursive definition generator at
a successor. There is no condition on the characteristic function 𝐹
other than 𝐹 Fn V. Given that, the resulting
expression
encompasses both the expected successor term
(𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to
the initial value 𝐴 and to limit ordinals
∪ 𝑥 ∈ 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).
If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6364. (Contributed by Jim Kingdon, 9-Jun-2019.) |
Ref | Expression |
---|---|
rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
rdgisuc1 | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgisuc1.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn V) | |
2 | rdgisuc1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | suceloni 4485 | . . . 4 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → suc 𝐵 ∈ On) |
6 | rdgival 6361 | . . 3 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ suc 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
7 | 1, 2, 5, 6 | syl3anc 1233 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
8 | df-suc 4356 | . . . . . . 7 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
9 | iuneq1 3886 | . . . . . . 7 ⊢ (suc 𝐵 = (𝐵 ∪ {𝐵}) → ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) |
11 | iunxun 3952 | . . . . . 6 ⊢ ∪ 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) | |
12 | 10, 11 | eqtri 2191 | . . . . 5 ⊢ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
13 | fveq2 5496 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝐵)) | |
14 | 13 | fveq2d 5500 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
15 | 14 | iunxsng 3948 | . . . . . 6 ⊢ (𝐵 ∈ On → ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
16 | 15 | uneq2d 3281 | . . . . 5 ⊢ (𝐵 ∈ On → (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
17 | 12, 16 | eqtrid 2215 | . . . 4 ⊢ (𝐵 ∈ On → ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
18 | 17 | uneq2d 3281 | . . 3 ⊢ (𝐵 ∈ On → (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
19 | 3, 18 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∪ ∪ 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
20 | 7, 19 | eqtrd 2203 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 {csn 3583 ∪ ciun 3873 Oncon0 4348 suc csuc 4350 Fn wfn 5193 ‘cfv 5198 reccrdg 6348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 df-irdg 6349 |
This theorem is referenced by: rdgisucinc 6364 |
Copyright terms: Public domain | W3C validator |