ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimul Unicode version

Theorem rimul 8604
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )

Proof of Theorem rimul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inelr 8603 . . 3  |-  -.  _i  e.  RR
2 recexre 8597 . . . . . 6  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
32adantlr 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  RR )
54recnd 8048 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  CC )
6 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  RR )
76recnd 8048 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  CC )
8 ax-icn 7967 . . . . . . . . 9  |-  _i  e.  CC
9 mulass 8003 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  A
)  x.  x )  =  ( _i  x.  ( A  x.  x
) ) )
108, 9mp3an1 1335 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
115, 7, 10syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
12 oveq2 5926 . . . . . . . . 9  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  ( _i  x.  1 ) )
138mulid1i 8021 . . . . . . . . 9  |-  ( _i  x.  1 )  =  _i
1412, 13eqtrdi 2242 . . . . . . . 8  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  _i )
1514ad2antll 491 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  ( A  x.  x )
)  =  _i )
1611, 15eqtrd 2226 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  _i )
17 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  A
)  e.  RR )
1817, 6remulcld 8050 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  e.  RR )
1916, 18eqeltrrd 2271 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  _i  e.  RR )
203, 19rexlimddv 2616 . . . 4  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  _i  e.  RR )
2120ex 115 . . 3  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A #  0  ->  _i  e.  RR ) )
221, 21mtoi 665 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  -.  A #  0 )
23 0re 8019 . . . 4  |-  0  e.  RR
24 reapti 8598 . . . 4  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2523, 24mpan2 425 . . 3  |-  ( A  e.  RR  ->  ( A  =  0  <->  -.  A #  0
) )
2625adantr 276 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2722, 26mpbird 167 1  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873   _ici 7874    x. cmul 7877   # creap 8593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594
This theorem is referenced by:  rereim  8605  cru  8621  cju  8980  crre  11001
  Copyright terms: Public domain W3C validator