| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rimul | Unicode version | ||
| Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rimul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inelr 8731 |
. . 3
| |
| 2 | recexre 8725 |
. . . . . 6
| |
| 3 | 2 | adantlr 477 |
. . . . 5
|
| 4 | simplll 533 |
. . . . . . . . 9
| |
| 5 | 4 | recnd 8175 |
. . . . . . . 8
|
| 6 | simprl 529 |
. . . . . . . . 9
| |
| 7 | 6 | recnd 8175 |
. . . . . . . 8
|
| 8 | ax-icn 8094 |
. . . . . . . . 9
| |
| 9 | mulass 8130 |
. . . . . . . . 9
| |
| 10 | 8, 9 | mp3an1 1358 |
. . . . . . . 8
|
| 11 | 5, 7, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | oveq2 6009 |
. . . . . . . . 9
| |
| 13 | 8 | mulridi 8148 |
. . . . . . . . 9
|
| 14 | 12, 13 | eqtrdi 2278 |
. . . . . . . 8
|
| 15 | 14 | ad2antll 491 |
. . . . . . 7
|
| 16 | 11, 15 | eqtrd 2262 |
. . . . . 6
|
| 17 | simpllr 534 |
. . . . . . 7
| |
| 18 | 17, 6 | remulcld 8177 |
. . . . . 6
|
| 19 | 16, 18 | eqeltrrd 2307 |
. . . . 5
|
| 20 | 3, 19 | rexlimddv 2653 |
. . . 4
|
| 21 | 20 | ex 115 |
. . 3
|
| 22 | 1, 21 | mtoi 668 |
. 2
|
| 23 | 0re 8146 |
. . . 4
| |
| 24 | reapti 8726 |
. . . 4
| |
| 25 | 23, 24 | mpan2 425 |
. . 3
|
| 26 | 25 | adantr 276 |
. 2
|
| 27 | 22, 26 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-sub 8319 df-neg 8320 df-reap 8722 |
| This theorem is referenced by: rereim 8733 cru 8749 cju 9108 crre 11368 |
| Copyright terms: Public domain | W3C validator |