ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimul Unicode version

Theorem rimul 8556
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )

Proof of Theorem rimul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inelr 8555 . . 3  |-  -.  _i  e.  RR
2 recexre 8549 . . . . . 6  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
32adantlr 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  RR )
54recnd 8000 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  CC )
6 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  RR )
76recnd 8000 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  CC )
8 ax-icn 7920 . . . . . . . . 9  |-  _i  e.  CC
9 mulass 7956 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  A
)  x.  x )  =  ( _i  x.  ( A  x.  x
) ) )
108, 9mp3an1 1334 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
115, 7, 10syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
12 oveq2 5896 . . . . . . . . 9  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  ( _i  x.  1 ) )
138mulid1i 7973 . . . . . . . . 9  |-  ( _i  x.  1 )  =  _i
1412, 13eqtrdi 2236 . . . . . . . 8  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  _i )
1514ad2antll 491 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  ( A  x.  x )
)  =  _i )
1611, 15eqtrd 2220 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  _i )
17 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  A
)  e.  RR )
1817, 6remulcld 8002 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  e.  RR )
1916, 18eqeltrrd 2265 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  _i  e.  RR )
203, 19rexlimddv 2609 . . . 4  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  _i  e.  RR )
2120ex 115 . . 3  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A #  0  ->  _i  e.  RR ) )
221, 21mtoi 665 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  -.  A #  0 )
23 0re 7971 . . . 4  |-  0  e.  RR
24 reapti 8550 . . . 4  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2523, 24mpan2 425 . . 3  |-  ( A  e.  RR  ->  ( A  =  0  <->  -.  A #  0
) )
2625adantr 276 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2722, 26mpbird 167 1  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826   _ici 7827    x. cmul 7830   # creap 8545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-sub 8144  df-neg 8145  df-reap 8546
This theorem is referenced by:  rereim  8557  cru  8573  cju  8932  crre  10880
  Copyright terms: Public domain W3C validator