ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimul Unicode version

Theorem rimul 8693
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )

Proof of Theorem rimul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inelr 8692 . . 3  |-  -.  _i  e.  RR
2 recexre 8686 . . . . . 6  |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
32adantlr 477 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
4 simplll 533 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  RR )
54recnd 8136 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  A  e.  CC )
6 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  RR )
76recnd 8136 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  x  e.  CC )
8 ax-icn 8055 . . . . . . . . 9  |-  _i  e.  CC
9 mulass 8091 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( _i  x.  A
)  x.  x )  =  ( _i  x.  ( A  x.  x
) ) )
108, 9mp3an1 1337 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
115, 7, 10syl2anc 411 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  ( _i  x.  ( A  x.  x ) ) )
12 oveq2 5975 . . . . . . . . 9  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  ( _i  x.  1 ) )
138mulridi 8109 . . . . . . . . 9  |-  ( _i  x.  1 )  =  _i
1412, 13eqtrdi 2256 . . . . . . . 8  |-  ( ( A  x.  x )  =  1  ->  (
_i  x.  ( A  x.  x ) )  =  _i )
1514ad2antll 491 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  ( A  x.  x )
)  =  _i )
1611, 15eqtrd 2240 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  =  _i )
17 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( _i  x.  A
)  e.  RR )
1817, 6remulcld 8138 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  -> 
( ( _i  x.  A )  x.  x
)  e.  RR )
1916, 18eqeltrrd 2285 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  /\  A #  0
)  /\  ( x  e.  RR  /\  ( A  x.  x )  =  1 ) )  ->  _i  e.  RR )
203, 19rexlimddv 2630 . . . 4  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A #  0 )  ->  _i  e.  RR )
2120ex 115 . . 3  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A #  0  ->  _i  e.  RR ) )
221, 21mtoi 666 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  -.  A #  0 )
23 0re 8107 . . . 4  |-  0  e.  RR
24 reapti 8687 . . . 4  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2523, 24mpan2 425 . . 3  |-  ( A  e.  RR  ->  ( A  =  0  <->  -.  A #  0
) )
2625adantr 276 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A  =  0  <->  -.  A #  0 ) )
2722, 26mpbird 167 1  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961   _ici 7962    x. cmul 7965   # creap 8682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683
This theorem is referenced by:  rereim  8694  cru  8710  cju  9069  crre  11283
  Copyright terms: Public domain W3C validator