ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsub Unicode version

Theorem rexsub 10049
Description: Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
rexsub  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e  -e B )  =  ( A  -  B
) )

Proof of Theorem rexsub
StepHypRef Expression
1 rexneg 10026 . . . 4  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
21adantl 277 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-e B  = 
-u B )
32oveq2d 6017 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e  -e B )  =  ( A +e -u B ) )
4 renegcl 8407 . . 3  |-  ( B  e.  RR  ->  -u B  e.  RR )
5 rexadd 10048 . . 3  |-  ( ( A  e.  RR  /\  -u B  e.  RR )  ->  ( A +e -u B )  =  ( A  +  -u B ) )
64, 5sylan2 286 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e -u B )  =  ( A  +  -u B
) )
7 recn 8132 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
8 recn 8132 . . 3  |-  ( B  e.  RR  ->  B  e.  CC )
9 negsub 8394 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
107, 8, 9syl2an 289 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  -u B )  =  ( A  -  B ) )
113, 6, 103eqtrd 2266 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e  -e B )  =  ( A  -  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   RRcr 7998    + caddc 8002    - cmin 8317   -ucneg 8318    -ecxne 9965   +ecxad 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-sub 8319  df-neg 8320  df-xneg 9968  df-xadd 9969
This theorem is referenced by:  xposdif  10078  blss2ps  15080  blss2  15081
  Copyright terms: Public domain W3C validator