ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnpcan Unicode version

Theorem xnpcan 9595
Description: Extended real version of npcan 7935. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnpcan  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e B )  =  A )

Proof of Theorem xnpcan
StepHypRef Expression
1 rexr 7775 . . . . 5  |-  ( B  e.  RR  ->  B  e.  RR* )
2 xnegneg 9556 . . . . 5  |-  ( B  e.  RR*  ->  -e  -e B  =  B )
31, 2syl 14 . . . 4  |-  ( B  e.  RR  ->  -e  -e B  =  B )
43adantl 273 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  -e  -e B  =  B )
54oveq2d 5756 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e  -e  -e B )  =  ( ( A +e  -e B ) +e B ) )
6 rexneg 9553 . . . 4  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
7 renegcl 7987 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
86, 7eqeltrd 2192 . . 3  |-  ( B  e.  RR  ->  -e
B  e.  RR )
9 xpncan 9594 . . 3  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR )  ->  ( ( A +e  -e
B ) +e  -e  -e B )  =  A )
108, 9sylan2 282 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e  -e  -e B )  =  A )
115, 10eqtr3d 2150 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e  -e B ) +e B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463  (class class class)co 5740   RRcr 7583   RR*cxr 7763   -ucneg 7898    -ecxne 9496   +ecxad 9497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-pnf 7766  df-mnf 7767  df-xr 7768  df-sub 7899  df-neg 7900  df-xneg 9499  df-xadd 9500
This theorem is referenced by:  xsubge0  9604  xlesubadd  9606  xrmaxaddlem  10969  xblss2ps  12468  xblss2  12469
  Copyright terms: Public domain W3C validator