| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpncan | Unicode version | ||
| Description: Extended real version of pncan 8352. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexneg 10026 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | 2 | oveq2d 6017 |
. 2
|
| 4 | renegcl 8407 |
. . . . . 6
| |
| 5 | 4 | ad2antlr 489 |
. . . . 5
|
| 6 | rexr 8192 |
. . . . . 6
| |
| 7 | renepnf 8194 |
. . . . . 6
| |
| 8 | xaddmnf2 10045 |
. . . . . 6
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . . 5
|
| 10 | 5, 9 | syl 14 |
. . . 4
|
| 11 | oveq1 6008 |
. . . . . 6
| |
| 12 | rexr 8192 |
. . . . . . . 8
| |
| 13 | renepnf 8194 |
. . . . . . . 8
| |
| 14 | xaddmnf2 10045 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | 11, 16 | sylan9eqr 2284 |
. . . . 5
|
| 18 | 17 | oveq1d 6016 |
. . . 4
|
| 19 | simpr 110 |
. . . 4
| |
| 20 | 10, 18, 19 | 3eqtr4d 2272 |
. . 3
|
| 21 | simpll 527 |
. . . . 5
| |
| 22 | simpr 110 |
. . . . 5
| |
| 23 | 12 | ad2antlr 489 |
. . . . 5
|
| 24 | renemnf 8195 |
. . . . . 6
| |
| 25 | 24 | ad2antlr 489 |
. . . . 5
|
| 26 | 4 | ad2antlr 489 |
. . . . . 6
|
| 27 | 26, 6 | syl 14 |
. . . . 5
|
| 28 | renemnf 8195 |
. . . . . 6
| |
| 29 | 26, 28 | syl 14 |
. . . . 5
|
| 30 | xaddass 10065 |
. . . . 5
| |
| 31 | 21, 22, 23, 25, 27, 29, 30 | syl222anc 1287 |
. . . 4
|
| 32 | simplr 528 |
. . . . . . . 8
| |
| 33 | 32, 26 | rexaddd 10050 |
. . . . . . 7
|
| 34 | 32 | recnd 8175 |
. . . . . . . 8
|
| 35 | 34 | negidd 8447 |
. . . . . . 7
|
| 36 | 33, 35 | eqtrd 2262 |
. . . . . 6
|
| 37 | 36 | oveq2d 6017 |
. . . . 5
|
| 38 | xaddid1 10058 |
. . . . . 6
| |
| 39 | 38 | ad2antrr 488 |
. . . . 5
|
| 40 | 37, 39 | eqtrd 2262 |
. . . 4
|
| 41 | 31, 40 | eqtrd 2262 |
. . 3
|
| 42 | xrmnfdc 10039 |
. . . . . 6
| |
| 43 | exmiddc 841 |
. . . . . 6
| |
| 44 | 42, 43 | syl 14 |
. . . . 5
|
| 45 | df-ne 2401 |
. . . . . 6
| |
| 46 | 45 | orbi2i 767 |
. . . . 5
|
| 47 | 44, 46 | sylibr 134 |
. . . 4
|
| 48 | 47 | adantr 276 |
. . 3
|
| 49 | 20, 41, 48 | mpjaodan 803 |
. 2
|
| 50 | 3, 49 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-sub 8319 df-neg 8320 df-xneg 9968 df-xadd 9969 |
| This theorem is referenced by: xnpcan 10068 xleadd1 10071 xrmaxaddlem 11771 |
| Copyright terms: Public domain | W3C validator |