| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpncan | Unicode version | ||
| Description: Extended real version of pncan 8313. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexneg 9987 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | 2 | oveq2d 5983 |
. 2
|
| 4 | renegcl 8368 |
. . . . . 6
| |
| 5 | 4 | ad2antlr 489 |
. . . . 5
|
| 6 | rexr 8153 |
. . . . . 6
| |
| 7 | renepnf 8155 |
. . . . . 6
| |
| 8 | xaddmnf2 10006 |
. . . . . 6
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . . 5
|
| 10 | 5, 9 | syl 14 |
. . . 4
|
| 11 | oveq1 5974 |
. . . . . 6
| |
| 12 | rexr 8153 |
. . . . . . . 8
| |
| 13 | renepnf 8155 |
. . . . . . . 8
| |
| 14 | xaddmnf2 10006 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | 11, 16 | sylan9eqr 2262 |
. . . . 5
|
| 18 | 17 | oveq1d 5982 |
. . . 4
|
| 19 | simpr 110 |
. . . 4
| |
| 20 | 10, 18, 19 | 3eqtr4d 2250 |
. . 3
|
| 21 | simpll 527 |
. . . . 5
| |
| 22 | simpr 110 |
. . . . 5
| |
| 23 | 12 | ad2antlr 489 |
. . . . 5
|
| 24 | renemnf 8156 |
. . . . . 6
| |
| 25 | 24 | ad2antlr 489 |
. . . . 5
|
| 26 | 4 | ad2antlr 489 |
. . . . . 6
|
| 27 | 26, 6 | syl 14 |
. . . . 5
|
| 28 | renemnf 8156 |
. . . . . 6
| |
| 29 | 26, 28 | syl 14 |
. . . . 5
|
| 30 | xaddass 10026 |
. . . . 5
| |
| 31 | 21, 22, 23, 25, 27, 29, 30 | syl222anc 1266 |
. . . 4
|
| 32 | simplr 528 |
. . . . . . . 8
| |
| 33 | 32, 26 | rexaddd 10011 |
. . . . . . 7
|
| 34 | 32 | recnd 8136 |
. . . . . . . 8
|
| 35 | 34 | negidd 8408 |
. . . . . . 7
|
| 36 | 33, 35 | eqtrd 2240 |
. . . . . 6
|
| 37 | 36 | oveq2d 5983 |
. . . . 5
|
| 38 | xaddid1 10019 |
. . . . . 6
| |
| 39 | 38 | ad2antrr 488 |
. . . . 5
|
| 40 | 37, 39 | eqtrd 2240 |
. . . 4
|
| 41 | 31, 40 | eqtrd 2240 |
. . 3
|
| 42 | xrmnfdc 10000 |
. . . . . 6
| |
| 43 | exmiddc 838 |
. . . . . 6
| |
| 44 | 42, 43 | syl 14 |
. . . . 5
|
| 45 | df-ne 2379 |
. . . . . 6
| |
| 46 | 45 | orbi2i 764 |
. . . . 5
|
| 47 | 44, 46 | sylibr 134 |
. . . 4
|
| 48 | 47 | adantr 276 |
. . 3
|
| 49 | 20, 41, 48 | mpjaodan 800 |
. 2
|
| 50 | 3, 49 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-sub 8280 df-neg 8281 df-xneg 9929 df-xadd 9930 |
| This theorem is referenced by: xnpcan 10029 xleadd1 10032 xrmaxaddlem 11686 |
| Copyright terms: Public domain | W3C validator |