| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpncan | Unicode version | ||
| Description: Extended real version of pncan 8232. (Contributed by Mario Carneiro, 20-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xpncan | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexneg 9905 | 
. . . 4
 | |
| 2 | 1 | adantl 277 | 
. . 3
 | 
| 3 | 2 | oveq2d 5938 | 
. 2
 | 
| 4 | renegcl 8287 | 
. . . . . 6
 | |
| 5 | 4 | ad2antlr 489 | 
. . . . 5
 | 
| 6 | rexr 8072 | 
. . . . . 6
 | |
| 7 | renepnf 8074 | 
. . . . . 6
 | |
| 8 | xaddmnf2 9924 | 
. . . . . 6
 | |
| 9 | 6, 7, 8 | syl2anc 411 | 
. . . . 5
 | 
| 10 | 5, 9 | syl 14 | 
. . . 4
 | 
| 11 | oveq1 5929 | 
. . . . . 6
 | |
| 12 | rexr 8072 | 
. . . . . . . 8
 | |
| 13 | renepnf 8074 | 
. . . . . . . 8
 | |
| 14 | xaddmnf2 9924 | 
. . . . . . . 8
 | |
| 15 | 12, 13, 14 | syl2anc 411 | 
. . . . . . 7
 | 
| 16 | 15 | adantl 277 | 
. . . . . 6
 | 
| 17 | 11, 16 | sylan9eqr 2251 | 
. . . . 5
 | 
| 18 | 17 | oveq1d 5937 | 
. . . 4
 | 
| 19 | simpr 110 | 
. . . 4
 | |
| 20 | 10, 18, 19 | 3eqtr4d 2239 | 
. . 3
 | 
| 21 | simpll 527 | 
. . . . 5
 | |
| 22 | simpr 110 | 
. . . . 5
 | |
| 23 | 12 | ad2antlr 489 | 
. . . . 5
 | 
| 24 | renemnf 8075 | 
. . . . . 6
 | |
| 25 | 24 | ad2antlr 489 | 
. . . . 5
 | 
| 26 | 4 | ad2antlr 489 | 
. . . . . 6
 | 
| 27 | 26, 6 | syl 14 | 
. . . . 5
 | 
| 28 | renemnf 8075 | 
. . . . . 6
 | |
| 29 | 26, 28 | syl 14 | 
. . . . 5
 | 
| 30 | xaddass 9944 | 
. . . . 5
 | |
| 31 | 21, 22, 23, 25, 27, 29, 30 | syl222anc 1265 | 
. . . 4
 | 
| 32 | simplr 528 | 
. . . . . . . 8
 | |
| 33 | 32, 26 | rexaddd 9929 | 
. . . . . . 7
 | 
| 34 | 32 | recnd 8055 | 
. . . . . . . 8
 | 
| 35 | 34 | negidd 8327 | 
. . . . . . 7
 | 
| 36 | 33, 35 | eqtrd 2229 | 
. . . . . 6
 | 
| 37 | 36 | oveq2d 5938 | 
. . . . 5
 | 
| 38 | xaddid1 9937 | 
. . . . . 6
 | |
| 39 | 38 | ad2antrr 488 | 
. . . . 5
 | 
| 40 | 37, 39 | eqtrd 2229 | 
. . . 4
 | 
| 41 | 31, 40 | eqtrd 2229 | 
. . 3
 | 
| 42 | xrmnfdc 9918 | 
. . . . . 6
 | |
| 43 | exmiddc 837 | 
. . . . . 6
 | |
| 44 | 42, 43 | syl 14 | 
. . . . 5
 | 
| 45 | df-ne 2368 | 
. . . . . 6
 | |
| 46 | 45 | orbi2i 763 | 
. . . . 5
 | 
| 47 | 44, 46 | sylibr 134 | 
. . . 4
 | 
| 48 | 47 | adantr 276 | 
. . 3
 | 
| 49 | 20, 41, 48 | mpjaodan 799 | 
. 2
 | 
| 50 | 3, 49 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-sub 8199 df-neg 8200 df-xneg 9847 df-xadd 9848 | 
| This theorem is referenced by: xnpcan 9947 xleadd1 9950 xrmaxaddlem 11425 | 
| Copyright terms: Public domain | W3C validator |