ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpncan Unicode version

Theorem xpncan 9807
Description: Extended real version of pncan 8104. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  A )

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 9766 . . . 4  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
21adantl 275 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  -e
B  =  -u B
)
32oveq2d 5858 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  ( ( A +e B ) +e -u B ) )
4 renegcl 8159 . . . . . 6  |-  ( B  e.  RR  ->  -u B  e.  RR )
54ad2antlr 481 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  -u B  e.  RR )
6 rexr 7944 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
7 renepnf 7946 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  =/= +oo )
8 xaddmnf2 9785 . . . . . 6  |-  ( (
-u B  e.  RR*  /\  -u B  =/= +oo )  ->  ( -oo +e -u B )  = -oo )
96, 7, 8syl2anc 409 . . . . 5  |-  ( -u B  e.  RR  ->  ( -oo +e -u B )  = -oo )
105, 9syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e -u B )  = -oo )
11 oveq1 5849 . . . . . 6  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
12 rexr 7944 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
13 renepnf 7946 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
14 xaddmnf2 9785 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
1512, 13, 14syl2anc 409 . . . . . . 7  |-  ( B  e.  RR  ->  ( -oo +e B )  = -oo )
1615adantl 275 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( -oo +e B )  = -oo )
1711, 16sylan9eqr 2221 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e B )  = -oo )
1817oveq1d 5857 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( ( A +e B ) +e -u B
)  =  ( -oo +e -u B
) )
19 simpr 109 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
2010, 18, 193eqtr4d 2208 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( ( A +e B ) +e -u B
)  =  A )
21 simpll 519 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  A  e.  RR* )
22 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  A  =/= -oo )
2312ad2antlr 481 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  RR* )
24 renemnf 7947 . . . . . 6  |-  ( B  e.  RR  ->  B  =/= -oo )
2524ad2antlr 481 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  =/= -oo )
264ad2antlr 481 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  e.  RR )
2726, 6syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  e.  RR* )
28 renemnf 7947 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  =/= -oo )
2926, 28syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  =/= -oo )
30 xaddass 9805 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( -u B  e. 
RR*  /\  -u B  =/= -oo ) )  ->  (
( A +e
B ) +e -u B )  =  ( A +e ( B +e -u B ) ) )
3121, 22, 23, 25, 27, 29, 30syl222anc 1244 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( ( A +e B ) +e -u B
)  =  ( A +e ( B +e -u B
) ) )
32 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  RR )
3332, 26rexaddd 9790 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B +e -u B )  =  ( B  +  -u B ) )
3432recnd 7927 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  CC )
3534negidd 8199 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B  +  -u B )  =  0 )
3633, 35eqtrd 2198 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B +e -u B )  =  0 )
3736oveq2d 5858 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e ( B +e -u B ) )  =  ( A +e 0 ) )
38 xaddid1 9798 . . . . . 6  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
3938ad2antrr 480 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e 0 )  =  A )
4037, 39eqtrd 2198 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e ( B +e -u B ) )  =  A )
4131, 40eqtrd 2198 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( ( A +e B ) +e -u B
)  =  A )
42 xrmnfdc 9779 . . . . . 6  |-  ( A  e.  RR*  -> DECID  A  = -oo )
43 exmiddc 826 . . . . . 6  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
4442, 43syl 14 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  -.  A  = -oo )
)
45 df-ne 2337 . . . . . 6  |-  ( A  =/= -oo  <->  -.  A  = -oo )
4645orbi2i 752 . . . . 5  |-  ( ( A  = -oo  \/  A  =/= -oo )  <->  ( A  = -oo  \/  -.  A  = -oo ) )
4744, 46sylibr 133 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  A  =/= -oo ) )
4847adantr 274 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  = -oo  \/  A  =/= -oo ) )
4920, 41, 48mpjaodan 788 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e -u B )  =  A )
503, 49eqtrd 2198 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932   -ucneg 8070    -ecxne 9705   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-sub 8071  df-neg 8072  df-xneg 9708  df-xadd 9709
This theorem is referenced by:  xnpcan  9808  xleadd1  9811  xrmaxaddlem  11201
  Copyright terms: Public domain W3C validator