ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpncan Unicode version

Theorem xpncan 10067
Description: Extended real version of pncan 8352. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  A )

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 10026 . . . 4  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
21adantl 277 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  -e
B  =  -u B
)
32oveq2d 6017 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  ( ( A +e B ) +e -u B ) )
4 renegcl 8407 . . . . . 6  |-  ( B  e.  RR  ->  -u B  e.  RR )
54ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  -u B  e.  RR )
6 rexr 8192 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
7 renepnf 8194 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  =/= +oo )
8 xaddmnf2 10045 . . . . . 6  |-  ( (
-u B  e.  RR*  /\  -u B  =/= +oo )  ->  ( -oo +e -u B )  = -oo )
96, 7, 8syl2anc 411 . . . . 5  |-  ( -u B  e.  RR  ->  ( -oo +e -u B )  = -oo )
105, 9syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e -u B )  = -oo )
11 oveq1 6008 . . . . . 6  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
12 rexr 8192 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
13 renepnf 8194 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
14 xaddmnf2 10045 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
1512, 13, 14syl2anc 411 . . . . . . 7  |-  ( B  e.  RR  ->  ( -oo +e B )  = -oo )
1615adantl 277 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( -oo +e B )  = -oo )
1711, 16sylan9eqr 2284 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e B )  = -oo )
1817oveq1d 6016 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( ( A +e B ) +e -u B
)  =  ( -oo +e -u B
) )
19 simpr 110 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
2010, 18, 193eqtr4d 2272 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( ( A +e B ) +e -u B
)  =  A )
21 simpll 527 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  A  e.  RR* )
22 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  A  =/= -oo )
2312ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  RR* )
24 renemnf 8195 . . . . . 6  |-  ( B  e.  RR  ->  B  =/= -oo )
2524ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  =/= -oo )
264ad2antlr 489 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  e.  RR )
2726, 6syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  e.  RR* )
28 renemnf 8195 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  =/= -oo )
2926, 28syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  =/= -oo )
30 xaddass 10065 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( -u B  e. 
RR*  /\  -u B  =/= -oo ) )  ->  (
( A +e
B ) +e -u B )  =  ( A +e ( B +e -u B ) ) )
3121, 22, 23, 25, 27, 29, 30syl222anc 1287 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( ( A +e B ) +e -u B
)  =  ( A +e ( B +e -u B
) ) )
32 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  RR )
3332, 26rexaddd 10050 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B +e -u B )  =  ( B  +  -u B ) )
3432recnd 8175 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  CC )
3534negidd 8447 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B  +  -u B )  =  0 )
3633, 35eqtrd 2262 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B +e -u B )  =  0 )
3736oveq2d 6017 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e ( B +e -u B ) )  =  ( A +e 0 ) )
38 xaddid1 10058 . . . . . 6  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
3938ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e 0 )  =  A )
4037, 39eqtrd 2262 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e ( B +e -u B ) )  =  A )
4131, 40eqtrd 2262 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( ( A +e B ) +e -u B
)  =  A )
42 xrmnfdc 10039 . . . . . 6  |-  ( A  e.  RR*  -> DECID  A  = -oo )
43 exmiddc 841 . . . . . 6  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
4442, 43syl 14 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  -.  A  = -oo )
)
45 df-ne 2401 . . . . . 6  |-  ( A  =/= -oo  <->  -.  A  = -oo )
4645orbi2i 767 . . . . 5  |-  ( ( A  = -oo  \/  A  =/= -oo )  <->  ( A  = -oo  \/  -.  A  = -oo ) )
4744, 46sylibr 134 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  A  =/= -oo ) )
4847adantr 276 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  = -oo  \/  A  =/= -oo ) )
4920, 41, 48mpjaodan 803 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e -u B )  =  A )
503, 49eqtrd 2262 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400  (class class class)co 6001   RRcr 7998   0cc0 7999    + caddc 8002   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180   -ucneg 8318    -ecxne 9965   +ecxad 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-sub 8319  df-neg 8320  df-xneg 9968  df-xadd 9969
This theorem is referenced by:  xnpcan  10068  xleadd1  10071  xrmaxaddlem  11771
  Copyright terms: Public domain W3C validator