ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpncan Unicode version

Theorem xpncan 9858
Description: Extended real version of pncan 8153. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  A )

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 9817 . . . 4  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
21adantl 277 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  -e
B  =  -u B
)
32oveq2d 5885 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  ( ( A +e B ) +e -u B ) )
4 renegcl 8208 . . . . . 6  |-  ( B  e.  RR  ->  -u B  e.  RR )
54ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  -u B  e.  RR )
6 rexr 7993 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  e.  RR* )
7 renepnf 7995 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  =/= +oo )
8 xaddmnf2 9836 . . . . . 6  |-  ( (
-u B  e.  RR*  /\  -u B  =/= +oo )  ->  ( -oo +e -u B )  = -oo )
96, 7, 8syl2anc 411 . . . . 5  |-  ( -u B  e.  RR  ->  ( -oo +e -u B )  = -oo )
105, 9syl 14 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( -oo +e -u B )  = -oo )
11 oveq1 5876 . . . . . 6  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
12 rexr 7993 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
13 renepnf 7995 . . . . . . . 8  |-  ( B  e.  RR  ->  B  =/= +oo )
14 xaddmnf2 9836 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
1512, 13, 14syl2anc 411 . . . . . . 7  |-  ( B  e.  RR  ->  ( -oo +e B )  = -oo )
1615adantl 277 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( -oo +e B )  = -oo )
1711, 16sylan9eqr 2232 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A +e B )  = -oo )
1817oveq1d 5884 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( ( A +e B ) +e -u B
)  =  ( -oo +e -u B
) )
19 simpr 110 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
2010, 18, 193eqtr4d 2220 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  = -oo )  ->  ( ( A +e B ) +e -u B
)  =  A )
21 simpll 527 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  A  e.  RR* )
22 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  A  =/= -oo )
2312ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  RR* )
24 renemnf 7996 . . . . . 6  |-  ( B  e.  RR  ->  B  =/= -oo )
2524ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  =/= -oo )
264ad2antlr 489 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  e.  RR )
2726, 6syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  e.  RR* )
28 renemnf 7996 . . . . . 6  |-  ( -u B  e.  RR  ->  -u B  =/= -oo )
2926, 28syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  -u B  =/= -oo )
30 xaddass 9856 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( -u B  e. 
RR*  /\  -u B  =/= -oo ) )  ->  (
( A +e
B ) +e -u B )  =  ( A +e ( B +e -u B ) ) )
3121, 22, 23, 25, 27, 29, 30syl222anc 1254 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( ( A +e B ) +e -u B
)  =  ( A +e ( B +e -u B
) ) )
32 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  RR )
3332, 26rexaddd 9841 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B +e -u B )  =  ( B  +  -u B ) )
3432recnd 7976 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  B  e.  CC )
3534negidd 8248 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B  +  -u B )  =  0 )
3633, 35eqtrd 2210 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( B +e -u B )  =  0 )
3736oveq2d 5885 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e ( B +e -u B ) )  =  ( A +e 0 ) )
38 xaddid1 9849 . . . . . 6  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
3938ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e 0 )  =  A )
4037, 39eqtrd 2210 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( A +e ( B +e -u B ) )  =  A )
4131, 40eqtrd 2210 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  =/= -oo )  ->  ( ( A +e B ) +e -u B
)  =  A )
42 xrmnfdc 9830 . . . . . 6  |-  ( A  e.  RR*  -> DECID  A  = -oo )
43 exmiddc 836 . . . . . 6  |-  (DECID  A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo ) )
4442, 43syl 14 . . . . 5  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  -.  A  = -oo )
)
45 df-ne 2348 . . . . . 6  |-  ( A  =/= -oo  <->  -.  A  = -oo )
4645orbi2i 762 . . . . 5  |-  ( ( A  = -oo  \/  A  =/= -oo )  <->  ( A  = -oo  \/  -.  A  = -oo ) )
4744, 46sylibr 134 . . . 4  |-  ( A  e.  RR*  ->  ( A  = -oo  \/  A  =/= -oo ) )
4847adantr 276 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  = -oo  \/  A  =/= -oo ) )
4920, 41, 48mpjaodan 798 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e -u B )  =  A )
503, 49eqtrd 2210 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A +e
B ) +e  -e B )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347  (class class class)co 5869   RRcr 7801   0cc0 7802    + caddc 7805   +oocpnf 7979   -oocmnf 7980   RR*cxr 7981   -ucneg 8119    -ecxne 9756   +ecxad 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-sub 8120  df-neg 8121  df-xneg 9759  df-xadd 9760
This theorem is referenced by:  xnpcan  9859  xleadd1  9862  xrmaxaddlem  11252
  Copyright terms: Public domain W3C validator