ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringdir Unicode version

Theorem ringdir 13155
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
ringdi.b  |-  B  =  ( Base `  R
)
ringdi.p  |-  .+  =  ( +g  `  R )
ringdi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringdir  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )

Proof of Theorem ringdir
StepHypRef Expression
1 ringdi.b . . 3  |-  B  =  ( Base `  R
)
2 ringdi.p . . 3  |-  .+  =  ( +g  `  R )
3 ringdi.t . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3ringdilem 13148 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
54simprd 114 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530   .rcmulr 12531   Ringcrg 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-ov 5877  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-mulr 12544  df-ring 13134
This theorem is referenced by:  ringadd2  13163  rngo2times  13164  ringcom  13167  ringlz  13175  ringnegl  13181  rngsubdir  13187  mulgass2  13188  ringressid  13191  opprring  13202  dvrdir  13265  issubrg2  13322
  Copyright terms: Public domain W3C validator