ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpf Unicode version

Theorem mgpf 13974
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
mgpf  |-  (mulGrp  |`  Ring ) : Ring --> Mnd

Proof of Theorem mgpf
StepHypRef Expression
1 fnmgp 13885 . . 3  |- mulGrp  Fn  _V
2 ssv 3246 . . 3  |-  Ring  C_  _V
3 fnssres 5436 . . 3  |-  ( (mulGrp 
Fn  _V  /\  Ring  C_  _V )  ->  (mulGrp  |`  Ring )  Fn  Ring )
41, 2, 3mp2an 426 . 2  |-  (mulGrp  |`  Ring )  Fn  Ring
5 fvres 5651 . . . 4  |-  ( a  e.  Ring  ->  ( (mulGrp  |` 
Ring ) `  a
)  =  (mulGrp `  a ) )
6 eqid 2229 . . . . 5  |-  (mulGrp `  a )  =  (mulGrp `  a )
76ringmgp 13965 . . . 4  |-  ( a  e.  Ring  ->  (mulGrp `  a )  e.  Mnd )
85, 7eqeltrd 2306 . . 3  |-  ( a  e.  Ring  ->  ( (mulGrp  |` 
Ring ) `  a
)  e.  Mnd )
98rgen 2583 . 2  |-  A. a  e.  Ring  ( (mulGrp  |`  Ring ) `  a )  e.  Mnd
10 ffnfv 5793 . 2  |-  ( (mulGrp  |` 
Ring ) : Ring --> Mnd  <->  ( (mulGrp  |`  Ring )  Fn  Ring  /\ 
A. a  e.  Ring  ( (mulGrp  |`  Ring ) `  a
)  e.  Mnd )
)
114, 9, 10mpbir2an 948 1  |-  (mulGrp  |`  Ring ) : Ring --> Mnd
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197    |` cres 4721    Fn wfn 5313   -->wf 5314   ` cfv 5318   Mndcmnd 13449  mulGrpcmgp 13883   Ringcrg 13959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-mgp 13884  df-ring 13961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator