| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringcl | Unicode version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b |
|
| ringcl.t |
|
| Ref | Expression |
|---|---|
| ringcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . . . 5
| |
| 2 | 1 | ringmgp 13879 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1021 |
. . 3
|
| 4 | simp2 1001 |
. . . 4
| |
| 5 | ringcl.b |
. . . . . . 7
| |
| 6 | 1, 5 | mgpbasg 13803 |
. . . . . 6
|
| 7 | 6 | eleq2d 2277 |
. . . . 5
|
| 8 | 7 | 3ad2ant1 1021 |
. . . 4
|
| 9 | 4, 8 | mpbid 147 |
. . 3
|
| 10 | simp3 1002 |
. . . 4
| |
| 11 | 6 | eleq2d 2277 |
. . . . 5
|
| 12 | 11 | 3ad2ant1 1021 |
. . . 4
|
| 13 | 10, 12 | mpbid 147 |
. . 3
|
| 14 | eqid 2207 |
. . . 4
| |
| 15 | eqid 2207 |
. . . 4
| |
| 16 | 14, 15 | mndcl 13370 |
. . 3
|
| 17 | 3, 9, 13, 16 | syl3anc 1250 |
. 2
|
| 18 | ringcl.t |
. . . . . 6
| |
| 19 | 1, 18 | mgpplusgg 13801 |
. . . . 5
|
| 20 | 19 | oveqd 5984 |
. . . 4
|
| 21 | 20, 6 | eleq12d 2278 |
. . 3
|
| 22 | 21 | 3ad2ant1 1021 |
. 2
|
| 23 | 17, 22 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-plusg 13037 df-mulr 13038 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-mgp 13798 df-ring 13875 |
| This theorem is referenced by: ringlz 13920 ringrz 13921 ringnegl 13928 ringnegr 13929 ringmneg1 13930 ringmneg2 13931 ringm2neg 13932 ringsubdi 13933 ringsubdir 13934 mulgass2 13935 ringlghm 13938 ringrghm 13939 ringressid 13940 imasring 13941 qusring2 13943 opprring 13956 dvdsrcl2 13976 dvdsrtr 13978 dvdsrmul1 13979 dvrvald 14011 dvrcl 14012 dvrass 14016 rdivmuldivd 14021 subrgmcl 14110 lmodmcl 14177 lmodprop2d 14225 rmodislmodlem 14227 sralmod 14327 qusrhm 14405 qusmul2 14406 |
| Copyright terms: Public domain | W3C validator |