| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringcl | Unicode version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b |
|
| ringcl.t |
|
| Ref | Expression |
|---|---|
| ringcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . . 5
| |
| 2 | 1 | ringmgp 13797 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1021 |
. . 3
|
| 4 | simp2 1001 |
. . . 4
| |
| 5 | ringcl.b |
. . . . . . 7
| |
| 6 | 1, 5 | mgpbasg 13721 |
. . . . . 6
|
| 7 | 6 | eleq2d 2275 |
. . . . 5
|
| 8 | 7 | 3ad2ant1 1021 |
. . . 4
|
| 9 | 4, 8 | mpbid 147 |
. . 3
|
| 10 | simp3 1002 |
. . . 4
| |
| 11 | 6 | eleq2d 2275 |
. . . . 5
|
| 12 | 11 | 3ad2ant1 1021 |
. . . 4
|
| 13 | 10, 12 | mpbid 147 |
. . 3
|
| 14 | eqid 2205 |
. . . 4
| |
| 15 | eqid 2205 |
. . . 4
| |
| 16 | 14, 15 | mndcl 13288 |
. . 3
|
| 17 | 3, 9, 13, 16 | syl3anc 1250 |
. 2
|
| 18 | ringcl.t |
. . . . . 6
| |
| 19 | 1, 18 | mgpplusgg 13719 |
. . . . 5
|
| 20 | 19 | oveqd 5963 |
. . . 4
|
| 21 | 20, 6 | eleq12d 2276 |
. . 3
|
| 22 | 21 | 3ad2ant1 1021 |
. 2
|
| 23 | 17, 22 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-plusg 12955 df-mulr 12956 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-mgp 13716 df-ring 13793 |
| This theorem is referenced by: ringlz 13838 ringrz 13839 ringnegl 13846 ringnegr 13847 ringmneg1 13848 ringmneg2 13849 ringm2neg 13850 ringsubdi 13851 ringsubdir 13852 mulgass2 13853 ringlghm 13856 ringrghm 13857 ringressid 13858 imasring 13859 qusring2 13861 opprring 13874 dvdsrcl2 13894 dvdsrtr 13896 dvdsrmul1 13897 dvrvald 13929 dvrcl 13930 dvrass 13934 rdivmuldivd 13939 subrgmcl 14028 lmodmcl 14095 lmodprop2d 14143 rmodislmodlem 14145 sralmod 14245 qusrhm 14323 qusmul2 14324 |
| Copyright terms: Public domain | W3C validator |