| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringcl | Unicode version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b |
|
| ringcl.t |
|
| Ref | Expression |
|---|---|
| ringcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . . . 5
| |
| 2 | 1 | ringmgp 13764 |
. . . 4
|
| 3 | 2 | 3ad2ant1 1021 |
. . 3
|
| 4 | simp2 1001 |
. . . 4
| |
| 5 | ringcl.b |
. . . . . . 7
| |
| 6 | 1, 5 | mgpbasg 13688 |
. . . . . 6
|
| 7 | 6 | eleq2d 2275 |
. . . . 5
|
| 8 | 7 | 3ad2ant1 1021 |
. . . 4
|
| 9 | 4, 8 | mpbid 147 |
. . 3
|
| 10 | simp3 1002 |
. . . 4
| |
| 11 | 6 | eleq2d 2275 |
. . . . 5
|
| 12 | 11 | 3ad2ant1 1021 |
. . . 4
|
| 13 | 10, 12 | mpbid 147 |
. . 3
|
| 14 | eqid 2205 |
. . . 4
| |
| 15 | eqid 2205 |
. . . 4
| |
| 16 | 14, 15 | mndcl 13255 |
. . 3
|
| 17 | 3, 9, 13, 16 | syl3anc 1250 |
. 2
|
| 18 | ringcl.t |
. . . . . 6
| |
| 19 | 1, 18 | mgpplusgg 13686 |
. . . . 5
|
| 20 | 19 | oveqd 5961 |
. . . 4
|
| 21 | 20, 6 | eleq12d 2276 |
. . 3
|
| 22 | 21 | 3ad2ant1 1021 |
. 2
|
| 23 | 17, 22 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-mgp 13683 df-ring 13760 |
| This theorem is referenced by: ringlz 13805 ringrz 13806 ringnegl 13813 ringnegr 13814 ringmneg1 13815 ringmneg2 13816 ringm2neg 13817 ringsubdi 13818 ringsubdir 13819 mulgass2 13820 ringlghm 13823 ringrghm 13824 ringressid 13825 imasring 13826 qusring2 13828 opprring 13841 dvdsrcl2 13861 dvdsrtr 13863 dvdsrmul1 13864 dvrvald 13896 dvrcl 13897 dvrass 13901 rdivmuldivd 13906 subrgmcl 13995 lmodmcl 14062 lmodprop2d 14110 rmodislmodlem 14112 sralmod 14212 qusrhm 14290 qusmul2 14291 |
| Copyright terms: Public domain | W3C validator |