ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem18 Unicode version

Theorem pythagtriplem18 12419
Description: Lemma for pythagtrip 12421. Wrap the previous  M and  N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^
2 )  -  (
n ^ 2 ) )  /\  B  =  ( 2  x.  (
m  x.  n ) )  /\  C  =  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )
Distinct variable groups:    A, m, n    B, m, n    C, m, n

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  =  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )
21pythagtriplem13 12414 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
3 eqid 2193 . . 3  |-  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  =  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )
43pythagtriplem11 12412 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
53, 1pythagtriplem15 12416 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
63, 1pythagtriplem16 12417 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
73, 1pythagtriplem17 12418 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
8 oveq1 5925 . . . . . 6  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( n ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )
98oveq2d 5934 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  -  ( n ^
2 ) )  =  ( ( m ^
2 )  -  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) )
109eqeq2d 2205 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( A  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  <->  A  =  ( ( m ^
2 )  -  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) ) )
11 oveq2 5926 . . . . . 6  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m  x.  n )  =  ( m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
1211oveq2d 5934 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( 2  x.  ( m  x.  n ) )  =  ( 2  x.  (
m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
1312eqeq2d 2205 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( B  =  ( 2  x.  ( m  x.  n
) )  <->  B  =  ( 2  x.  (
m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) ) )
148oveq2d 5934 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  +  ( n ^
2 ) )  =  ( ( m ^
2 )  +  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) )
1514eqeq2d 2205 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( C  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  <->  C  =  ( ( m ^
2 )  +  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) ) )
1610, 13, 153anbi123d 1323 . . 3  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( ( A  =  ( (
m ^ 2 )  -  ( n ^
2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) )  /\  C  =  ( (
m ^ 2 )  +  ( n ^
2 ) ) )  <-> 
( A  =  ( ( m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) ) )
17 oveq1 5925 . . . . . 6  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )
1817oveq1d 5933 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
1918eqeq2d 2205 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( A  =  ( ( m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )  <->  A  =  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )
20 oveq1 5925 . . . . . 6  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m  x.  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) )  =  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
2120oveq2d 5934 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( 2  x.  ( m  x.  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ) )  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
2221eqeq2d 2205 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  <-> 
B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) ) )
2317oveq1d 5933 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
2423eqeq2d 2205 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )  <->  C  =  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )
2519, 22, 243anbi123d 1323 . . 3  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( ( A  =  ( (
m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )  <->  ( A  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) ) )
2616, 25rspc2ev 2879 . 2  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )  e.  NN  /\  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN  /\  ( A  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( (
m ^ 2 )  -  ( n ^
2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) )  /\  C  =  ( (
m ^ 2 )  +  ( n ^
2 ) ) ) )
272, 4, 5, 6, 7, 26syl113anc 1261 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^
2 )  -  (
n ^ 2 ) )  /\  B  =  ( 2  x.  (
m  x.  n ) )  /\  C  =  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1c1 7873    + caddc 7875    x. cmul 7877    - cmin 8190    / cdiv 8691   NNcn 8982   2c2 9033   ^cexp 10609   sqrcsqrt 11140    || cdvds 11930    gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246
This theorem is referenced by:  pythagtriplem19  12420
  Copyright terms: Public domain W3C validator