ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem18 Unicode version

Theorem pythagtriplem18 12172
Description: Lemma for pythagtrip 12174. Wrap the previous  M and  N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^
2 )  -  (
n ^ 2 ) )  /\  B  =  ( 2  x.  (
m  x.  n ) )  /\  C  =  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )
Distinct variable groups:    A, m, n    B, m, n    C, m, n

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2157 . . 3  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  =  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )
21pythagtriplem13 12167 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
3 eqid 2157 . . 3  |-  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  =  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )
43pythagtriplem11 12165 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
53, 1pythagtriplem15 12169 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
63, 1pythagtriplem16 12170 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
73, 1pythagtriplem17 12171 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
8 oveq1 5834 . . . . . 6  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( n ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )
98oveq2d 5843 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  -  ( n ^
2 ) )  =  ( ( m ^
2 )  -  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) )
109eqeq2d 2169 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( A  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  <->  A  =  ( ( m ^
2 )  -  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) ) )
11 oveq2 5835 . . . . . 6  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m  x.  n )  =  ( m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
1211oveq2d 5843 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( 2  x.  ( m  x.  n ) )  =  ( 2  x.  (
m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
1312eqeq2d 2169 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( B  =  ( 2  x.  ( m  x.  n
) )  <->  B  =  ( 2  x.  (
m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) ) )
148oveq2d 5843 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  +  ( n ^
2 ) )  =  ( ( m ^
2 )  +  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) )
1514eqeq2d 2169 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( C  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  <->  C  =  ( ( m ^
2 )  +  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) ) )
1610, 13, 153anbi123d 1294 . . 3  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( ( A  =  ( (
m ^ 2 )  -  ( n ^
2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) )  /\  C  =  ( (
m ^ 2 )  +  ( n ^
2 ) ) )  <-> 
( A  =  ( ( m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) ) )
17 oveq1 5834 . . . . . 6  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )
1817oveq1d 5842 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
1918eqeq2d 2169 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( A  =  ( ( m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )  <->  A  =  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )
20 oveq1 5834 . . . . . 6  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m  x.  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) )  =  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
2120oveq2d 5843 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( 2  x.  ( m  x.  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ) )  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
2221eqeq2d 2169 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  <-> 
B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) ) )
2317oveq1d 5842 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
2423eqeq2d 2169 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )  <->  C  =  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )
2519, 22, 243anbi123d 1294 . . 3  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( ( A  =  ( (
m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )  <->  ( A  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) ) )
2616, 25rspc2ev 2831 . 2  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )  e.  NN  /\  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN  /\  ( A  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( (
m ^ 2 )  -  ( n ^
2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) )  /\  C  =  ( (
m ^ 2 )  +  ( n ^
2 ) ) ) )
272, 4, 5, 6, 7, 26syl113anc 1232 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^
2 )  -  (
n ^ 2 ) )  /\  B  =  ( 2  x.  (
m  x.  n ) )  /\  C  =  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1335    e. wcel 2128   E.wrex 2436   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   1c1 7736    + caddc 7738    x. cmul 7740    - cmin 8051    / cdiv 8550   NNcn 8839   2c2 8890   ^cexp 10428   sqrcsqrt 10908    || cdvds 11695    gcd cgcd 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001
This theorem is referenced by:  pythagtriplem19  12173
  Copyright terms: Public domain W3C validator