ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcn2 Unicode version

Theorem addcn2 11302
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 13719 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 9668 . . 3  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 1018 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
4 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
5 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
63, 4, 5pnpcan2d 8296 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  +  v )  -  ( B  +  v ) )  =  ( u  -  B
) )
76fveq2d 5515 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  =  ( abs `  ( u  -  B ) ) )
87breq1d 4010 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u  +  v )  -  ( B  +  v
) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( A  /  2 ) ) )
9 simpl3 1002 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
104, 5, 9pnpcand 8295 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  +  v )  -  ( B  +  C ) )  =  ( v  -  C
) )
1110fveq2d 5515 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  +  v )  -  ( B  +  C )
) )  =  ( abs `  ( v  -  C ) ) )
1211breq1d 4010 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( B  +  v )  -  ( B  +  C
) ) )  < 
( A  /  2
)  <->  ( abs `  (
v  -  C ) )  <  ( A  /  2 ) ) )
138, 12anbi12d 473 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
14 addcl 7927 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
1514adantl 277 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  +  v )  e.  CC )
164, 9addcld 7967 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  C )  e.  CC )
174, 5addcld 7967 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  v )  e.  CC )
18 simpl1 1000 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
1918rpred 9683 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
20 abs3lem 11104 . . . . 5  |-  ( ( ( ( u  +  v )  e.  CC  /\  ( B  +  C
)  e.  CC )  /\  ( ( B  +  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2115, 16, 17, 19, 20syl22anc 1239 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2213, 21sylbird 170 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2322ralrimivva 2559 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
24 breq2 4004 . . . . . 6  |-  ( y  =  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  <  y  <->  ( abs `  ( u  -  B
) )  <  ( A  /  2 ) ) )
2524anbi1d 465 . . . . 5  |-  ( y  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
2625imbi1d 231 . . . 4  |-  ( y  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
27262ralbidv 2501 . . 3  |-  ( y  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
28 breq2 4004 . . . . . 6  |-  ( z  =  ( A  / 
2 )  ->  (
( abs `  (
v  -  C ) )  <  z  <->  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) )
2928anbi2d 464 . . . . 5  |-  ( z  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
3029imbi1d 231 . . . 4  |-  ( z  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
31302ralbidv 2501 . . 3  |-  ( z  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
3227, 31rspc2ev 2856 . 2  |-  ( ( ( A  /  2
)  e.  RR+  /\  ( A  /  2 )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
332, 2, 23, 32syl3anc 1238 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801    + caddc 7805    < clt 7982    - cmin 8118    / cdiv 8618   2c2 8959   RR+crp 9640   abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  subcn2  11303  climadd  11318  addcncntop  13719
  Copyright terms: Public domain W3C validator