ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcn2 Unicode version

Theorem addcn2 11816
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 15230 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 9873 . . 3  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 1042 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
4 simpl2 1025 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
5 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
63, 4, 5pnpcan2d 8491 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  +  v )  -  ( B  +  v ) )  =  ( u  -  B
) )
76fveq2d 5630 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  =  ( abs `  ( u  -  B ) ) )
87breq1d 4092 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u  +  v )  -  ( B  +  v
) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( A  /  2 ) ) )
9 simpl3 1026 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
104, 5, 9pnpcand 8490 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  +  v )  -  ( B  +  C ) )  =  ( v  -  C
) )
1110fveq2d 5630 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  +  v )  -  ( B  +  C )
) )  =  ( abs `  ( v  -  C ) ) )
1211breq1d 4092 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( B  +  v )  -  ( B  +  C
) ) )  < 
( A  /  2
)  <->  ( abs `  (
v  -  C ) )  <  ( A  /  2 ) ) )
138, 12anbi12d 473 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
14 addcl 8120 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
1514adantl 277 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  +  v )  e.  CC )
164, 9addcld 8162 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  C )  e.  CC )
174, 5addcld 8162 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  v )  e.  CC )
18 simpl1 1024 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
1918rpred 9888 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
20 abs3lem 11617 . . . . 5  |-  ( ( ( ( u  +  v )  e.  CC  /\  ( B  +  C
)  e.  CC )  /\  ( ( B  +  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2115, 16, 17, 19, 20syl22anc 1272 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2213, 21sylbird 170 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2322ralrimivva 2612 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
24 breq2 4086 . . . . . 6  |-  ( y  =  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  <  y  <->  ( abs `  ( u  -  B
) )  <  ( A  /  2 ) ) )
2524anbi1d 465 . . . . 5  |-  ( y  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
2625imbi1d 231 . . . 4  |-  ( y  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
27262ralbidv 2554 . . 3  |-  ( y  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
28 breq2 4086 . . . . . 6  |-  ( z  =  ( A  / 
2 )  ->  (
( abs `  (
v  -  C ) )  <  z  <->  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) )
2928anbi2d 464 . . . . 5  |-  ( z  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
3029imbi1d 231 . . . 4  |-  ( z  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
31302ralbidv 2554 . . 3  |-  ( z  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
3227, 31rspc2ev 2922 . 2  |-  ( ( ( A  /  2
)  e.  RR+  /\  ( A  /  2 )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
332, 2, 23, 32syl3anc 1271 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994    + caddc 7998    < clt 8177    - cmin 8313    / cdiv 8815   2c2 9157   RR+crp 9845   abscabs 11503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  subcn2  11817  climadd  11832  addcncntop  15230
  Copyright terms: Public domain W3C validator