ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcn2 Unicode version

Theorem addcn2 11621
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 15034 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 9803 . . 3  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 1021 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
4 simpl2 1004 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
5 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
63, 4, 5pnpcan2d 8421 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  +  v )  -  ( B  +  v ) )  =  ( u  -  B
) )
76fveq2d 5580 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  =  ( abs `  ( u  -  B ) ) )
87breq1d 4054 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u  +  v )  -  ( B  +  v
) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( A  /  2 ) ) )
9 simpl3 1005 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
104, 5, 9pnpcand 8420 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  +  v )  -  ( B  +  C ) )  =  ( v  -  C
) )
1110fveq2d 5580 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  +  v )  -  ( B  +  C )
) )  =  ( abs `  ( v  -  C ) ) )
1211breq1d 4054 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( B  +  v )  -  ( B  +  C
) ) )  < 
( A  /  2
)  <->  ( abs `  (
v  -  C ) )  <  ( A  /  2 ) ) )
138, 12anbi12d 473 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
14 addcl 8050 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
1514adantl 277 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  +  v )  e.  CC )
164, 9addcld 8092 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  C )  e.  CC )
174, 5addcld 8092 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  v )  e.  CC )
18 simpl1 1003 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
1918rpred 9818 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
20 abs3lem 11422 . . . . 5  |-  ( ( ( ( u  +  v )  e.  CC  /\  ( B  +  C
)  e.  CC )  /\  ( ( B  +  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2115, 16, 17, 19, 20syl22anc 1251 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2213, 21sylbird 170 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2322ralrimivva 2588 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
24 breq2 4048 . . . . . 6  |-  ( y  =  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  <  y  <->  ( abs `  ( u  -  B
) )  <  ( A  /  2 ) ) )
2524anbi1d 465 . . . . 5  |-  ( y  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
2625imbi1d 231 . . . 4  |-  ( y  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
27262ralbidv 2530 . . 3  |-  ( y  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
28 breq2 4048 . . . . . 6  |-  ( z  =  ( A  / 
2 )  ->  (
( abs `  (
v  -  C ) )  <  z  <->  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) )
2928anbi2d 464 . . . . 5  |-  ( z  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
3029imbi1d 231 . . . 4  |-  ( z  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
31302ralbidv 2530 . . 3  |-  ( z  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
3227, 31rspc2ev 2892 . 2  |-  ( ( ( A  /  2
)  e.  RR+  /\  ( A  /  2 )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
332, 2, 23, 32syl3anc 1250 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924    + caddc 7928    < clt 8107    - cmin 8243    / cdiv 8745   2c2 9087   RR+crp 9775   abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  subcn2  11622  climadd  11637  addcncntop  15034
  Copyright terms: Public domain W3C validator