ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsumo2 Unicode version

Theorem telfsumo2 11613
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1  |-  ( k  =  j  ->  A  =  B )
telfsumo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
telfsumo.3  |-  ( k  =  M  ->  A  =  D )
telfsumo.4  |-  ( k  =  N  ->  A  =  E )
telfsumo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
telfsumo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
telfsumo2  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem telfsumo2
StepHypRef Expression
1 telfsumo.1 . . . 4  |-  ( k  =  j  ->  A  =  B )
21negeqd 8216 . . 3  |-  ( k  =  j  ->  -u A  =  -u B )
3 telfsumo.2 . . . 4  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
43negeqd 8216 . . 3  |-  ( k  =  ( j  +  1 )  ->  -u A  =  -u C )
5 telfsumo.3 . . . 4  |-  ( k  =  M  ->  A  =  D )
65negeqd 8216 . . 3  |-  ( k  =  M  ->  -u A  =  -u D )
7 telfsumo.4 . . . 4  |-  ( k  =  N  ->  A  =  E )
87negeqd 8216 . . 3  |-  ( k  =  N  ->  -u A  =  -u E )
9 telfsumo.5 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 telfsumo.6 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
1110negcld 8319 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u A  e.  CC )
122, 4, 6, 8, 9, 11telfsumo 11612 . 2  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) (
-u B  -  -u C
)  =  ( -u D  -  -u E ) )
1310ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
14 elfzofz 10232 . . . . 5  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
151eleq1d 2262 . . . . . 6  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
1615rspccva 2864 . . . . 5  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  j  e.  ( M ... N ) )  ->  B  e.  CC )
1713, 14, 16syl2an 289 . . . 4  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
18 fzofzp1 10297 . . . . 5  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
193eleq1d 2262 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
2019rspccva 2864 . . . . 5  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  C  e.  CC )
2113, 18, 20syl2an 289 . . . 4  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
2217, 21neg2subd 8349 . . 3  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( -u B  -  -u C )  =  ( C  -  B
) )
2322sumeq2dv 11514 . 2  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) (
-u B  -  -u C
)  =  sum_ j  e.  ( M..^ N ) ( C  -  B
) )
245eleq1d 2262 . . . 4  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
25 eluzfz1 10100 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
269, 25syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
2724, 13, 26rspcdva 2870 . . 3  |-  ( ph  ->  D  e.  CC )
287eleq1d 2262 . . . 4  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
29 eluzfz2 10101 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
309, 29syl 14 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
3128, 13, 30rspcdva 2870 . . 3  |-  ( ph  ->  E  e.  CC )
3227, 31neg2subd 8349 . 2  |-  ( ph  ->  ( -u D  -  -u E )  =  ( E  -  D ) )
3312, 23, 323eqtr3d 2234 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5255  (class class class)co 5919   CCcc 7872   1c1 7875    + caddc 7877    - cmin 8192   -ucneg 8193   ZZ>=cuz 9595   ...cfz 10077  ..^cfzo 10211   sum_csu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  telfsum2  11615
  Copyright terms: Public domain W3C validator