ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsumo2 Unicode version

Theorem telfsumo2 11408
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1  |-  ( k  =  j  ->  A  =  B )
telfsumo.2  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
telfsumo.3  |-  ( k  =  M  ->  A  =  D )
telfsumo.4  |-  ( k  =  N  ->  A  =  E )
telfsumo.5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
telfsumo.6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
Assertion
Ref Expression
telfsumo2  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
Distinct variable groups:    A, j    B, k    C, k    j, k, M    j, N, k    ph, j, k    D, k   
k, E
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)

Proof of Theorem telfsumo2
StepHypRef Expression
1 telfsumo.1 . . . 4  |-  ( k  =  j  ->  A  =  B )
21negeqd 8093 . . 3  |-  ( k  =  j  ->  -u A  =  -u B )
3 telfsumo.2 . . . 4  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
43negeqd 8093 . . 3  |-  ( k  =  ( j  +  1 )  ->  -u A  =  -u C )
5 telfsumo.3 . . . 4  |-  ( k  =  M  ->  A  =  D )
65negeqd 8093 . . 3  |-  ( k  =  M  ->  -u A  =  -u D )
7 telfsumo.4 . . . 4  |-  ( k  =  N  ->  A  =  E )
87negeqd 8093 . . 3  |-  ( k  =  N  ->  -u A  =  -u E )
9 telfsumo.5 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 telfsumo.6 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
1110negcld 8196 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  -u A  e.  CC )
122, 4, 6, 8, 9, 11telfsumo 11407 . 2  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) (
-u B  -  -u C
)  =  ( -u D  -  -u E ) )
1310ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
14 elfzofz 10097 . . . . 5  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
151eleq1d 2235 . . . . . 6  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
1615rspccva 2829 . . . . 5  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  j  e.  ( M ... N ) )  ->  B  e.  CC )
1713, 14, 16syl2an 287 . . . 4  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
18 fzofzp1 10162 . . . . 5  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
193eleq1d 2235 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
2019rspccva 2829 . . . . 5  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  C  e.  CC )
2113, 18, 20syl2an 287 . . . 4  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
2217, 21neg2subd 8226 . . 3  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( -u B  -  -u C )  =  ( C  -  B
) )
2322sumeq2dv 11309 . 2  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) (
-u B  -  -u C
)  =  sum_ j  e.  ( M..^ N ) ( C  -  B
) )
245eleq1d 2235 . . . 4  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
25 eluzfz1 9966 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
269, 25syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
2724, 13, 26rspcdva 2835 . . 3  |-  ( ph  ->  D  e.  CC )
287eleq1d 2235 . . . 4  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
29 eluzfz2 9967 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
309, 29syl 14 . . . 4  |-  ( ph  ->  N  e.  ( M ... N ) )
3128, 13, 30rspcdva 2835 . . 3  |-  ( ph  ->  E  e.  CC )
3227, 31neg2subd 8226 . 2  |-  ( ph  ->  ( -u D  -  -u E )  =  ( E  -  D ) )
3312, 23, 323eqtr3d 2206 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842   CCcc 7751   1c1 7754    + caddc 7756    - cmin 8069   -ucneg 8070   ZZ>=cuz 9466   ...cfz 9944  ..^cfzo 10077   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  telfsum2  11410
  Copyright terms: Public domain W3C validator