ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprime Unicode version

Theorem dvdsprime 11792
Description: If  M divides a prime, then  M is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.)
Assertion
Ref Expression
dvdsprime  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  ( M  ||  P  <->  ( M  =  P  \/  M  =  1 ) ) )

Proof of Theorem dvdsprime
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 isprm2 11787 . . 3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. m  e.  NN  ( m  ||  P  -> 
( m  =  1  \/  m  =  P ) ) ) )
2 breq1 3927 . . . . . 6  |-  ( m  =  M  ->  (
m  ||  P  <->  M  ||  P
) )
3 eqeq1 2144 . . . . . . . 8  |-  ( m  =  M  ->  (
m  =  1  <->  M  =  1 ) )
4 eqeq1 2144 . . . . . . . 8  |-  ( m  =  M  ->  (
m  =  P  <->  M  =  P ) )
53, 4orbi12d 782 . . . . . . 7  |-  ( m  =  M  ->  (
( m  =  1  \/  m  =  P )  <->  ( M  =  1  \/  M  =  P ) ) )
6 orcom 717 . . . . . . 7  |-  ( ( M  =  1  \/  M  =  P )  <-> 
( M  =  P  \/  M  =  1 ) )
75, 6syl6bb 195 . . . . . 6  |-  ( m  =  M  ->  (
( m  =  1  \/  m  =  P )  <->  ( M  =  P  \/  M  =  1 ) ) )
82, 7imbi12d 233 . . . . 5  |-  ( m  =  M  ->  (
( m  ||  P  ->  ( m  =  1  \/  m  =  P ) )  <->  ( M  ||  P  ->  ( M  =  P  \/  M  =  1 ) ) ) )
98rspccva 2783 . . . 4  |-  ( ( A. m  e.  NN  ( m  ||  P  -> 
( m  =  1  \/  m  =  P ) )  /\  M  e.  NN )  ->  ( M  ||  P  ->  ( M  =  P  \/  M  =  1 ) ) )
109adantll 467 . . 3  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. m  e.  NN  (
m  ||  P  ->  ( m  =  1  \/  m  =  P ) ) )  /\  M  e.  NN )  ->  ( M  ||  P  ->  ( M  =  P  \/  M  =  1 ) ) )
111, 10sylanb 282 . 2  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  ( M  ||  P  ->  ( M  =  P  \/  M  =  1 ) ) )
12 prmz 11781 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
13 iddvds 11495 . . . . . 6  |-  ( P  e.  ZZ  ->  P  ||  P )
1412, 13syl 14 . . . . 5  |-  ( P  e.  Prime  ->  P  ||  P )
1514adantr 274 . . . 4  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  P  ||  P )
16 breq1 3927 . . . 4  |-  ( M  =  P  ->  ( M  ||  P  <->  P  ||  P
) )
1715, 16syl5ibrcom 156 . . 3  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  ( M  =  P  ->  M 
||  P ) )
18 1dvds 11496 . . . . . 6  |-  ( P  e.  ZZ  ->  1  ||  P )
1912, 18syl 14 . . . . 5  |-  ( P  e.  Prime  ->  1  ||  P )
2019adantr 274 . . . 4  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  1  ||  P )
21 breq1 3927 . . . 4  |-  ( M  =  1  ->  ( M  ||  P  <->  1  ||  P ) )
2220, 21syl5ibrcom 156 . . 3  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  ( M  =  1  ->  M 
||  P ) )
2317, 22jaod 706 . 2  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  (
( M  =  P  \/  M  =  1 )  ->  M  ||  P
) )
2411, 23impbid 128 1  |-  ( ( P  e.  Prime  /\  M  e.  NN )  ->  ( M  ||  P  <->  ( M  =  P  \/  M  =  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2414   class class class wbr 3924   ` cfv 5118   1c1 7614   NNcn 8713   2c2 8764   ZZcz 9047   ZZ>=cuz 9319    || cdvds 11482   Primecprime 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-2o 6307  df-er 6422  df-en 6628  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-prm 11778
This theorem is referenced by:  prm2orodd  11796
  Copyright terms: Public domain W3C validator