| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s111 | GIF version | ||
| Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s111 | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 11145 | . . 3 ⊢ (𝑆 ∈ 𝐴 → 〈“𝑆”〉 = {〈0, 𝑆〉}) | |
| 2 | s1val 11145 | . . 3 ⊢ (𝑇 ∈ 𝐴 → 〈“𝑇”〉 = {〈0, 𝑇〉}) | |
| 3 | 1, 2 | eqeqan12d 2245 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ {〈0, 𝑆〉} = {〈0, 𝑇〉})) |
| 4 | 0nn0 9380 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 5 | simpl 109 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 𝑆 ∈ 𝐴) | |
| 6 | opexg 4313 | . . . 4 ⊢ ((0 ∈ ℕ0 ∧ 𝑆 ∈ 𝐴) → 〈0, 𝑆〉 ∈ V) | |
| 7 | 4, 5, 6 | sylancr 414 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → 〈0, 𝑆〉 ∈ V) |
| 8 | sneqbg 3840 | . . 3 ⊢ (〈0, 𝑆〉 ∈ V → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → ({〈0, 𝑆〉} = {〈0, 𝑇〉} ↔ 〈0, 𝑆〉 = 〈0, 𝑇〉)) |
| 10 | 0z 9453 | . . . 4 ⊢ 0 ∈ ℤ | |
| 11 | eqid 2229 | . . . . 5 ⊢ 0 = 0 | |
| 12 | opthg 4323 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ (0 = 0 ∧ 𝑆 = 𝑇))) | |
| 13 | 12 | baibd 928 | . . . . 5 ⊢ (((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) ∧ 0 = 0) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
| 14 | 11, 13 | mpan2 425 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑆 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
| 15 | 10, 14 | mpan 424 | . . 3 ⊢ (𝑆 ∈ 𝐴 → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
| 16 | 15 | adantr 276 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈0, 𝑆〉 = 〈0, 𝑇〉 ↔ 𝑆 = 𝑇)) |
| 17 | 3, 9, 16 | 3bitrd 214 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 〈cop 3669 0cc0 7995 ℕ0cn0 9365 ℤcz 9442 〈“cs1 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-i2m1 8100 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-neg 8316 df-n0 9366 df-z 9443 df-s1 11144 |
| This theorem is referenced by: pfxsuff1eqwrdeq 11226 |
| Copyright terms: Public domain | W3C validator |