ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s111 GIF version

Theorem s111 11108
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s111 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))

Proof of Theorem s111
StepHypRef Expression
1 s1val 11094 . . 3 (𝑆𝐴 → ⟨“𝑆”⟩ = {⟨0, 𝑆⟩})
2 s1val 11094 . . 3 (𝑇𝐴 → ⟨“𝑇”⟩ = {⟨0, 𝑇⟩})
31, 2eqeqan12d 2222 . 2 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ {⟨0, 𝑆⟩} = {⟨0, 𝑇⟩}))
4 0nn0 9330 . . . 4 0 ∈ ℕ0
5 simpl 109 . . . 4 ((𝑆𝐴𝑇𝐴) → 𝑆𝐴)
6 opexg 4280 . . . 4 ((0 ∈ ℕ0𝑆𝐴) → ⟨0, 𝑆⟩ ∈ V)
74, 5, 6sylancr 414 . . 3 ((𝑆𝐴𝑇𝐴) → ⟨0, 𝑆⟩ ∈ V)
8 sneqbg 3810 . . 3 (⟨0, 𝑆⟩ ∈ V → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
97, 8syl 14 . 2 ((𝑆𝐴𝑇𝐴) → ({⟨0, 𝑆⟩} = {⟨0, 𝑇⟩} ↔ ⟨0, 𝑆⟩ = ⟨0, 𝑇⟩))
10 0z 9403 . . . 4 0 ∈ ℤ
11 eqid 2206 . . . . 5 0 = 0
12 opthg 4290 . . . . . 6 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ (0 = 0 ∧ 𝑆 = 𝑇)))
1312baibd 925 . . . . 5 (((0 ∈ ℤ ∧ 𝑆𝐴) ∧ 0 = 0) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
1411, 13mpan2 425 . . . 4 ((0 ∈ ℤ ∧ 𝑆𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
1510, 14mpan 424 . . 3 (𝑆𝐴 → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
1615adantr 276 . 2 ((𝑆𝐴𝑇𝐴) → (⟨0, 𝑆⟩ = ⟨0, 𝑇⟩ ↔ 𝑆 = 𝑇))
173, 9, 163bitrd 214 1 ((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638  cop 3641  0cc0 7945  0cn0 9315  cz 9392  ⟨“cs1 11092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-i2m1 8050  ax-rnegex 8054
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-neg 8266  df-n0 9316  df-z 9393  df-s1 11093
This theorem is referenced by:  pfxsuff1eqwrdeq  11175
  Copyright terms: Public domain W3C validator