ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubdi Unicode version

Theorem negsubdi 7792
Description: Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negsubdi  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  (
-u A  +  B
) )

Proof of Theorem negsubdi
StepHypRef Expression
1 0cn 7534 . . 3  |-  0  e.  CC
2 subsub 7766 . . 3  |-  ( ( 0  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
0  -  ( A  -  B ) )  =  ( ( 0  -  A )  +  B ) )
31, 2mp3an1 1261 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  -  ( A  -  B )
)  =  ( ( 0  -  A )  +  B ) )
4 df-neg 7710 . 2  |-  -u ( A  -  B )  =  ( 0  -  ( A  -  B
) )
5 df-neg 7710 . . 3  |-  -u A  =  ( 0  -  A )
65oveq1i 5676 . 2  |-  ( -u A  +  B )  =  ( ( 0  -  A )  +  B )
73, 4, 63eqtr4g 2146 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  (
-u A  +  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439  (class class class)co 5666   CCcc 7402   0cc0 7404    + caddc 7407    - cmin 7707   -ucneg 7708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-resscn 7491  ax-1cn 7492  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7709  df-neg 7710
This theorem is referenced by:  negdi  7793  negsubdi2  7795  neg2sub  7796  negsubdid  7862  odd2np1  11205
  Copyright terms: Public domain W3C validator