ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subm0cl GIF version

Theorem subm0cl 13354
Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
subm0cl.z 0 = (0g𝑀)
Assertion
Ref Expression
subm0cl (𝑆 ∈ (SubMnd‘𝑀) → 0𝑆)

Proof of Theorem subm0cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 13347 . . . 4 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 eqid 2206 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
3 subm0cl.z . . . . 5 0 = (0g𝑀)
4 eqid 2206 . . . . 5 (+g𝑀) = (+g𝑀)
52, 3, 4issubm 13348 . . . 4 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
61, 5syl 14 . . 3 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
76ibi 176 . 2 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
87simp2d 1013 1 (𝑆 ∈ (SubMnd‘𝑀) → 0𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  wss 3167  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Mndcmnd 13292  SubMndcsubmnd 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-submnd 13336
This theorem is referenced by:  subm0  13358  subsubm  13359  resmhm  13363  mhmima  13367  gsumsubm  13370  gsumwsubmcl  13372  submmulgcl  13545  issubg3  13572  gsumfzsubmcl  13718
  Copyright terms: Public domain W3C validator