| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subm0cl | GIF version | ||
| Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| subm0cl.z | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| subm0cl | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrcl 13490 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
| 2 | eqid 2229 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | subm0cl.z | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 4 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | 2, 3, 4 | issubm 13491 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 7 | 6 | ibi 176 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
| 8 | 7 | simp2d 1034 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 0gc0g 13275 Mndcmnd 13435 SubMndcsubmnd 13477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-ov 5997 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-submnd 13479 |
| This theorem is referenced by: subm0 13501 subsubm 13502 resmhm 13506 mhmima 13510 gsumsubm 13513 gsumwsubmcl 13515 submmulgcl 13688 issubg3 13715 gsumfzsubmcl 13861 |
| Copyright terms: Public domain | W3C validator |