| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subm0cl | GIF version | ||
| Description: Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| subm0cl.z | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| subm0cl | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrcl 13347 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
| 2 | eqid 2206 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | subm0cl.z | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 4 | eqid 2206 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | 2, 3, 4 | issubm 13348 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 7 | 6 | ibi 176 | . 2 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
| 8 | 7 | simp2d 1013 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 0gc0g 13132 Mndcmnd 13292 SubMndcsubmnd 13334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-inn 9044 df-ndx 12879 df-slot 12880 df-base 12882 df-submnd 13336 |
| This theorem is referenced by: subm0 13358 subsubm 13359 resmhm 13363 mhmima 13367 gsumsubm 13370 gsumwsubmcl 13372 submmulgcl 13545 issubg3 13572 gsumfzsubmcl 13718 |
| Copyright terms: Public domain | W3C validator |