![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrngringnsg | GIF version |
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
Ref | Expression |
---|---|
subrngringnsg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngsubg 13703 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
2 | subrngrcl 13702 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
3 | rngabl 13434 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
4 | 2, 3 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel) |
5 | 4 | 3anim1i 1187 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
6 | 5 | 3expb 1206 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
7 | eqid 2193 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2193 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
9 | 7, 8 | ablcom 13376 | . . . . . 6 ⊢ ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
10 | 6, 9 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
11 | 10 | eleq1d 2262 | . . . 4 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
12 | 11 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
13 | 12 | ralrimivva 2576 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
14 | 7, 8 | isnsg2 13276 | . 2 ⊢ (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴))) |
15 | 1, 13, 14 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 +gcplusg 12698 SubGrpcsubg 13240 NrmSGrpcnsg 13241 Abelcabl 13358 Rngcrng 13431 SubRngcsubrng 13696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-subg 13243 df-nsg 13244 df-cmn 13359 df-abl 13360 df-rng 13432 df-subrng 13697 |
This theorem is referenced by: rng2idlnsg 14017 rng2idlsubgnsg 14020 |
Copyright terms: Public domain | W3C validator |