| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrngringnsg | GIF version | ||
| Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngringnsg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg 14010 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
| 2 | subrngrcl 14009 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 3 | rngabl 13741 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 4 | 2, 3 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel) |
| 5 | 4 | 3anim1i 1188 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
| 6 | 5 | 3expb 1207 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
| 7 | eqid 2206 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2206 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 7, 8 | ablcom 13683 | . . . . . 6 ⊢ ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
| 10 | 6, 9 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
| 11 | 10 | eleq1d 2275 | . . . 4 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 12 | 11 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 13 | 12 | ralrimivva 2589 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 14 | 7, 8 | isnsg2 13583 | . 2 ⊢ (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴))) |
| 15 | 1, 13, 14 | sylanbrc 417 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 SubGrpcsubg 13547 NrmSGrpcnsg 13548 Abelcabl 13665 Rngcrng 13738 SubRngcsubrng 14003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-mulr 12967 df-subg 13550 df-nsg 13551 df-cmn 13666 df-abl 13667 df-rng 13739 df-subrng 14004 |
| This theorem is referenced by: rng2idlnsg 14324 rng2idlsubgnsg 14327 |
| Copyright terms: Public domain | W3C validator |