ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngringnsg GIF version

Theorem subrngringnsg 13761
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))

Proof of Theorem subrngringnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13760 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrngrcl 13759 . . . . . . . . 9 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 rngabl 13491 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
42, 3syl 14 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel)
543anim1i 1187 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
653expb 1206 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
7 eqid 2196 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2196 . . . . . . 7 (+g𝑅) = (+g𝑅)
97, 8ablcom 13433 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
106, 9syl 14 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
1110eleq1d 2265 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1211biimpd 144 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1312ralrimivva 2579 . 2 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
147, 8isnsg2 13333 . 2 (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴)))
151, 13, 14sylanbrc 417 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  SubGrpcsubg 13297  NrmSGrpcnsg 13298  Abelcabl 13415  Rngcrng 13488  SubRngcsubrng 13753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-subg 13300  df-nsg 13301  df-cmn 13416  df-abl 13417  df-rng 13489  df-subrng 13754
This theorem is referenced by:  rng2idlnsg  14074  rng2idlsubgnsg  14077
  Copyright terms: Public domain W3C validator