ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsub Unicode version

Theorem addsub 8230
Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
addsub  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( ( A  -  C )  +  B ) )

Proof of Theorem addsub
StepHypRef Expression
1 addcom 8156 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
21oveq1d 5933 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  C
)  =  ( ( B  +  A )  -  C ) )
323adant3 1019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( ( B  +  A )  -  C ) )
4 addsubass 8229 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  -  C )  =  ( B  +  ( A  -  C
) ) )
543com12 1209 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  -  C )  =  ( B  +  ( A  -  C
) ) )
6 subcl 8218 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  -  C
)  e.  CC )
7 addcom 8156 . . . . 5  |-  ( ( B  e.  CC  /\  ( A  -  C
)  e.  CC )  ->  ( B  +  ( A  -  C
) )  =  ( ( A  -  C
)  +  B ) )
86, 7sylan2 286 . . . 4  |-  ( ( B  e.  CC  /\  ( A  e.  CC  /\  C  e.  CC ) )  ->  ( B  +  ( A  -  C ) )  =  ( ( A  -  C )  +  B
) )
983impb 1201 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  ( B  +  ( A  -  C ) )  =  ( ( A  -  C )  +  B
) )
1093com12 1209 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  +  ( A  -  C ) )  =  ( ( A  -  C )  +  B
) )
113, 5, 103eqtrd 2230 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( ( A  -  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875    - cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192
This theorem is referenced by:  subadd23  8231  2addsub  8233  nnpcan  8242  subsub  8249  npncan3  8257  addsub4  8262  addsubi  8311  addsubd  8351  muleqadd  8687  nnaddm1cl  9378  expubnd  10667  omeo  12039
  Copyright terms: Public domain W3C validator