| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgtop | GIF version | ||
| Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| tgtop | ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg3 14529 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) ↔ ∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦))) | |
| 2 | simpr 110 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 = ∪ 𝑦) | |
| 3 | uniopn 14473 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) → ∪ 𝑦 ∈ 𝐽) | |
| 4 | 3 | adantr 276 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → ∪ 𝑦 ∈ 𝐽) |
| 5 | 2, 4 | eqeltrd 2282 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽) ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽) |
| 6 | 5 | expl 378 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
| 7 | 6 | exlimdv 1842 | . . . 4 ⊢ (𝐽 ∈ Top → (∃𝑦(𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦) → 𝑥 ∈ 𝐽)) |
| 8 | 1, 7 | sylbid 150 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (topGen‘𝐽) → 𝑥 ∈ 𝐽)) |
| 9 | 8 | ssrdv 3199 | . 2 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) ⊆ 𝐽) |
| 10 | bastg 14533 | . 2 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (topGen‘𝐽)) | |
| 11 | 9, 10 | eqssd 3210 | 1 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ⊆ wss 3166 ∪ cuni 3850 ‘cfv 5271 topGenctg 13086 Topctop 14469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-topgen 13092 df-top 14470 |
| This theorem is referenced by: eltop 14541 eltop2 14542 eltop3 14543 bastop 14547 tgtop11 14548 basgen 14552 bastop1 14555 resttop 14642 |
| Copyright terms: Public domain | W3C validator |