ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg Unicode version

Theorem opprmulfvalg 13566
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulfvalg  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2  |-  .xb  =  ( .r `  O )
2 opprval.1 . . . . 5  |-  B  =  ( Base `  R
)
3 opprval.2 . . . . 5  |-  .x.  =  ( .r `  R )
4 opprval.3 . . . . 5  |-  O  =  (oppr
`  R )
52, 3, 4opprvalg 13565 . . . 4  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )
65fveq2d 5558 . . 3  |-  ( R  e.  V  ->  ( .r `  O )  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
7 mulrslid 12749 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
87slotex 12645 . . . . . 6  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
93, 8eqeltrid 2280 . . . . 5  |-  ( R  e.  V  ->  .x.  e.  _V )
10 tposexg 6311 . . . . 5  |-  (  .x.  e.  _V  -> tpos  .x.  e.  _V )
119, 10syl 14 . . . 4  |-  ( R  e.  V  -> tpos  .x.  e.  _V )
127setsslid 12669 . . . 4  |-  ( ( R  e.  V  /\ tpos  .x. 
e.  _V )  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
1311, 12mpdan 421 . . 3  |-  ( R  e.  V  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
146, 13eqtr4d 2229 . 2  |-  ( R  e.  V  ->  ( .r `  O )  = tpos  .x.  )
151, 14eqtrid 2238 1  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621   ` cfv 5254  (class class class)co 5918  tpos ctpos 6297   ndxcnx 12615   sSet csts 12616   Basecbs 12618   .rcmulr 12696  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-sets 12625  df-mulr 12709  df-oppr 13564
This theorem is referenced by:  opprmulg  13567
  Copyright terms: Public domain W3C validator