ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg Unicode version

Theorem opprmulfvalg 13569
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulfvalg  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2  |-  .xb  =  ( .r `  O )
2 opprval.1 . . . . 5  |-  B  =  ( Base `  R
)
3 opprval.2 . . . . 5  |-  .x.  =  ( .r `  R )
4 opprval.3 . . . . 5  |-  O  =  (oppr
`  R )
52, 3, 4opprvalg 13568 . . . 4  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )
65fveq2d 5559 . . 3  |-  ( R  e.  V  ->  ( .r `  O )  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
7 mulrslid 12752 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
87slotex 12648 . . . . . 6  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
93, 8eqeltrid 2280 . . . . 5  |-  ( R  e.  V  ->  .x.  e.  _V )
10 tposexg 6313 . . . . 5  |-  (  .x.  e.  _V  -> tpos  .x.  e.  _V )
119, 10syl 14 . . . 4  |-  ( R  e.  V  -> tpos  .x.  e.  _V )
127setsslid 12672 . . . 4  |-  ( ( R  e.  V  /\ tpos  .x. 
e.  _V )  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
1311, 12mpdan 421 . . 3  |-  ( R  e.  V  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
146, 13eqtr4d 2229 . 2  |-  ( R  e.  V  ->  ( .r `  O )  = tpos  .x.  )
151, 14eqtrid 2238 1  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3622   ` cfv 5255  (class class class)co 5919  tpos ctpos 6299   ndxcnx 12618   sSet csts 12619   Basecbs 12621   .rcmulr 12699  opprcoppr 13566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-sets 12628  df-mulr 12712  df-oppr 13567
This theorem is referenced by:  opprmulg  13570
  Copyright terms: Public domain W3C validator