ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg Unicode version

Theorem opprmulfvalg 13626
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulfvalg  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2  |-  .xb  =  ( .r `  O )
2 opprval.1 . . . . 5  |-  B  =  ( Base `  R
)
3 opprval.2 . . . . 5  |-  .x.  =  ( .r `  R )
4 opprval.3 . . . . 5  |-  O  =  (oppr
`  R )
52, 3, 4opprvalg 13625 . . . 4  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )
65fveq2d 5562 . . 3  |-  ( R  e.  V  ->  ( .r `  O )  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
7 mulrslid 12809 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
87slotex 12705 . . . . . 6  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
93, 8eqeltrid 2283 . . . . 5  |-  ( R  e.  V  ->  .x.  e.  _V )
10 tposexg 6316 . . . . 5  |-  (  .x.  e.  _V  -> tpos  .x.  e.  _V )
119, 10syl 14 . . . 4  |-  ( R  e.  V  -> tpos  .x.  e.  _V )
127setsslid 12729 . . . 4  |-  ( ( R  e.  V  /\ tpos  .x. 
e.  _V )  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
1311, 12mpdan 421 . . 3  |-  ( R  e.  V  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
146, 13eqtr4d 2232 . 2  |-  ( R  e.  V  ->  ( .r `  O )  = tpos  .x.  )
151, 14eqtrid 2241 1  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3625   ` cfv 5258  (class class class)co 5922  tpos ctpos 6302   ndxcnx 12675   sSet csts 12676   Basecbs 12678   .rcmulr 12756  opprcoppr 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-sets 12685  df-mulr 12769  df-oppr 13624
This theorem is referenced by:  opprmulg  13627
  Copyright terms: Public domain W3C validator