ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg Unicode version

Theorem opprmulfvalg 13865
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulfvalg  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2  |-  .xb  =  ( .r `  O )
2 opprval.1 . . . . 5  |-  B  =  ( Base `  R
)
3 opprval.2 . . . . 5  |-  .x.  =  ( .r `  R )
4 opprval.3 . . . . 5  |-  O  =  (oppr
`  R )
52, 3, 4opprvalg 13864 . . . 4  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )
65fveq2d 5582 . . 3  |-  ( R  e.  V  ->  ( .r `  O )  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
7 mulrslid 12997 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
87slotex 12892 . . . . . 6  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
93, 8eqeltrid 2292 . . . . 5  |-  ( R  e.  V  ->  .x.  e.  _V )
10 tposexg 6346 . . . . 5  |-  (  .x.  e.  _V  -> tpos  .x.  e.  _V )
119, 10syl 14 . . . 4  |-  ( R  e.  V  -> tpos  .x.  e.  _V )
127setsslid 12916 . . . 4  |-  ( ( R  e.  V  /\ tpos  .x. 
e.  _V )  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
1311, 12mpdan 421 . . 3  |-  ( R  e.  V  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
146, 13eqtr4d 2241 . 2  |-  ( R  e.  V  ->  ( .r `  O )  = tpos  .x.  )
151, 14eqtrid 2250 1  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636   ` cfv 5272  (class class class)co 5946  tpos ctpos 6332   ndxcnx 12862   sSet csts 12863   Basecbs 12865   .rcmulr 12943  opprcoppr 13862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-tpos 6333  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-sets 12872  df-mulr 12956  df-oppr 13863
This theorem is referenced by:  opprmulg  13866
  Copyright terms: Public domain W3C validator