ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprmulfvalg Unicode version

Theorem opprmulfvalg 14033
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
opprmulfval.4  |-  .xb  =  ( .r `  O )
Assertion
Ref Expression
opprmulfvalg  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )

Proof of Theorem opprmulfvalg
StepHypRef Expression
1 opprmulfval.4 . 2  |-  .xb  =  ( .r `  O )
2 opprval.1 . . . . 5  |-  B  =  ( Base `  R
)
3 opprval.2 . . . . 5  |-  .x.  =  ( .r `  R )
4 opprval.3 . . . . 5  |-  O  =  (oppr
`  R )
52, 3, 4opprvalg 14032 . . . 4  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )
65fveq2d 5631 . . 3  |-  ( R  e.  V  ->  ( .r `  O )  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
7 mulrslid 13165 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
87slotex 13059 . . . . . 6  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
93, 8eqeltrid 2316 . . . . 5  |-  ( R  e.  V  ->  .x.  e.  _V )
10 tposexg 6404 . . . . 5  |-  (  .x.  e.  _V  -> tpos  .x.  e.  _V )
119, 10syl 14 . . . 4  |-  ( R  e.  V  -> tpos  .x.  e.  _V )
127setsslid 13083 . . . 4  |-  ( ( R  e.  V  /\ tpos  .x. 
e.  _V )  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
1311, 12mpdan 421 . . 3  |-  ( R  e.  V  -> tpos  .x.  =  ( .r `  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
) )
146, 13eqtr4d 2265 . 2  |-  ( R  e.  V  ->  ( .r `  O )  = tpos  .x.  )
151, 14eqtrid 2274 1  |-  ( R  e.  V  ->  .xb  = tpos  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   ` cfv 5318  (class class class)co 6001  tpos ctpos 6390   ndxcnx 13029   sSet csts 13030   Basecbs 13032   .rcmulr 13111  opprcoppr 14030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-sets 13039  df-mulr 13124  df-oppr 14031
This theorem is referenced by:  opprmulg  14034
  Copyright terms: Public domain W3C validator