ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprvalg Unicode version

Theorem opprvalg 13701
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1  |-  B  =  ( Base `  R
)
opprval.2  |-  .x.  =  ( .r `  R )
opprval.3  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprvalg  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )

Proof of Theorem opprvalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opprval.3 . 2  |-  O  =  (oppr
`  R )
2 df-oppr 13700 . . 3  |- oppr  =  ( x  e.  _V  |->  ( x sSet  <. ( .r `  ndx ) , tpos  ( .r `  x
) >. ) )
3 id 19 . . . 4  |-  ( x  =  R  ->  x  =  R )
4 fveq2 5561 . . . . . . 7  |-  ( x  =  R  ->  ( .r `  x )  =  ( .r `  R
) )
5 opprval.2 . . . . . . 7  |-  .x.  =  ( .r `  R )
64, 5eqtr4di 2247 . . . . . 6  |-  ( x  =  R  ->  ( .r `  x )  = 
.x.  )
76tposeqd 6315 . . . . 5  |-  ( x  =  R  -> tpos  ( .r
`  x )  = tpos  .x.  )
87opeq2d 3816 . . . 4  |-  ( x  =  R  ->  <. ( .r `  ndx ) , tpos  ( .r `  x
) >.  =  <. ( .r `  ndx ) , tpos  .x.  >. )
93, 8oveq12d 5943 . . 3  |-  ( x  =  R  ->  (
x sSet  <. ( .r `  ndx ) , tpos  ( .r
`  x ) >.
)  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
)
10 elex 2774 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
11 mulrslid 12834 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
1211simpri 113 . . . . 5  |-  ( .r
`  ndx )  e.  NN
1312a1i 9 . . . 4  |-  ( R  e.  V  ->  ( .r `  ndx )  e.  NN )
1411slotex 12730 . . . . . 6  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
155, 14eqeltrid 2283 . . . . 5  |-  ( R  e.  V  ->  .x.  e.  _V )
16 tposexg 6325 . . . . 5  |-  (  .x.  e.  _V  -> tpos  .x.  e.  _V )
1715, 16syl 14 . . . 4  |-  ( R  e.  V  -> tpos  .x.  e.  _V )
18 setsex 12735 . . . 4  |-  ( ( R  e.  _V  /\  ( .r `  ndx )  e.  NN  /\ tpos  .x.  e.  _V )  ->  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )  e.  _V )
1910, 13, 17, 18syl3anc 1249 . . 3  |-  ( R  e.  V  ->  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )  e.  _V )
202, 9, 10, 19fvmptd3 5658 . 2  |-  ( R  e.  V  ->  (oppr `  R
)  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. )
)
211, 20eqtrid 2241 1  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  .x.  >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3626   ` cfv 5259  (class class class)co 5925  tpos ctpos 6311   NNcn 9007   ndxcnx 12700   sSet csts 12701  Slot cslot 12702   Basecbs 12703   .rcmulr 12781  opprcoppr 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-sets 12710  df-mulr 12794  df-oppr 13700
This theorem is referenced by:  opprmulfvalg  13702  opprex  13705  opprsllem  13706
  Copyright terms: Public domain W3C validator