ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposexg GIF version

Theorem tposexg 6325
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg (𝐹𝑉 → tpos 𝐹 ∈ V)

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6316 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 dmexg 4931 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 cnvexg 5208 . . . . 5 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
42, 3syl 14 . . . 4 (𝐹𝑉dom 𝐹 ∈ V)
5 p0ex 4222 . . . 4 {∅} ∈ V
6 unexg 4479 . . . 4 ((dom 𝐹 ∈ V ∧ {∅} ∈ V) → (dom 𝐹 ∪ {∅}) ∈ V)
74, 5, 6sylancl 413 . . 3 (𝐹𝑉 → (dom 𝐹 ∪ {∅}) ∈ V)
8 rnexg 4932 . . 3 (𝐹𝑉 → ran 𝐹 ∈ V)
9 xpexg 4778 . . 3 (((dom 𝐹 ∪ {∅}) ∈ V ∧ ran 𝐹 ∈ V) → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
107, 8, 9syl2anc 411 . 2 (𝐹𝑉 → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
11 ssexg 4173 . 2 ((tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V)
121, 10, 11sylancr 414 1 (𝐹𝑉 → tpos 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  cun 3155  wss 3157  c0 3451  {csn 3623   × cxp 4662  ccnv 4663  dom cdm 4664  ran crn 4665  tpos ctpos 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-tpos 6312
This theorem is referenced by:  tposex  6345  opprvalg  13701  opprmulfvalg  13702  opprex  13705  opprsllem  13706
  Copyright terms: Public domain W3C validator