ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposexg GIF version

Theorem tposexg 6311
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg (𝐹𝑉 → tpos 𝐹 ∈ V)

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6302 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 dmexg 4926 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 cnvexg 5203 . . . . 5 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
42, 3syl 14 . . . 4 (𝐹𝑉dom 𝐹 ∈ V)
5 p0ex 4217 . . . 4 {∅} ∈ V
6 unexg 4474 . . . 4 ((dom 𝐹 ∈ V ∧ {∅} ∈ V) → (dom 𝐹 ∪ {∅}) ∈ V)
74, 5, 6sylancl 413 . . 3 (𝐹𝑉 → (dom 𝐹 ∪ {∅}) ∈ V)
8 rnexg 4927 . . 3 (𝐹𝑉 → ran 𝐹 ∈ V)
9 xpexg 4773 . . 3 (((dom 𝐹 ∪ {∅}) ∈ V ∧ ran 𝐹 ∈ V) → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
107, 8, 9syl2anc 411 . 2 (𝐹𝑉 → ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V)
11 ssexg 4168 . 2 ((tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∧ ((dom 𝐹 ∪ {∅}) × ran 𝐹) ∈ V) → tpos 𝐹 ∈ V)
121, 10, 11sylancr 414 1 (𝐹𝑉 → tpos 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  Vcvv 2760  cun 3151  wss 3153  c0 3446  {csn 3618   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-tpos 6298
This theorem is referenced by:  tposex  6331  opprvalg  13565  opprmulfvalg  13566  opprex  13569  opprsllem  13570
  Copyright terms: Public domain W3C validator