ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsllem Unicode version

Theorem opprsllem 13869
Description: Lemma for opprbasg 13870 and oppraddg 13871. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
opprsllem.2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
opprlem.3  |-  ( E `
 ndx )  =/=  ( .r `  ndx )
Assertion
Ref Expression
opprsllem  |-  ( R  e.  V  ->  ( E `  R )  =  ( E `  O ) )

Proof of Theorem opprsllem
StepHypRef Expression
1 mulrslid 12997 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
21slotex 12892 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
3 tposexg 6346 . . . 4  |-  ( ( .r `  R )  e.  _V  -> tpos  ( .r
`  R )  e. 
_V )
42, 3syl 14 . . 3  |-  ( R  e.  V  -> tpos  ( .r
`  R )  e. 
_V )
5 opprsllem.2 . . . 4  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
6 opprlem.3 . . . 4  |-  ( E `
 ndx )  =/=  ( .r `  ndx )
71simpri 113 . . . 4  |-  ( .r
`  ndx )  e.  NN
85, 6, 7setsslnid 12917 . . 3  |-  ( ( R  e.  V  /\ tpos  ( .r `  R )  e.  _V )  -> 
( E `  R
)  =  ( E `
 ( R sSet  <. ( .r `  ndx ) , tpos  ( .r `  R
) >. ) ) )
94, 8mpdan 421 . 2  |-  ( R  e.  V  ->  ( E `  R )  =  ( E `  ( R sSet  <. ( .r
`  ndx ) , tpos  ( .r `  R ) >.
) ) )
10 eqid 2205 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2205 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
12 opprbas.1 . . . 4  |-  O  =  (oppr
`  R )
1310, 11, 12opprvalg 13864 . . 3  |-  ( R  e.  V  ->  O  =  ( R sSet  <. ( .r `  ndx ) , tpos  ( .r `  R
) >. ) )
1413fveq2d 5582 . 2  |-  ( R  e.  V  ->  ( E `  O )  =  ( E `  ( R sSet  <. ( .r
`  ndx ) , tpos  ( .r `  R ) >.
) ) )
159, 14eqtr4d 2241 1  |-  ( R  e.  V  ->  ( E `  R )  =  ( E `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   _Vcvv 2772   <.cop 3636   ` cfv 5272  (class class class)co 5946  tpos ctpos 6332   NNcn 9038   ndxcnx 12862   sSet csts 12863  Slot cslot 12864   Basecbs 12865   .rcmulr 12943  opprcoppr 13862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-tpos 6333  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-sets 12872  df-mulr 12956  df-oppr 13863
This theorem is referenced by:  opprbasg  13870  oppraddg  13871
  Copyright terms: Public domain W3C validator