| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlval | GIF version | ||
| Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.t | . . . 4 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 2 | 1 | 2idlmex 14307 | . . 3 ⊢ (𝑥 ∈ 𝑇 → 𝑅 ∈ V) |
| 3 | elinel1 3360 | . . . 4 ⊢ (𝑥 ∈ (𝐼 ∩ 𝐽) → 𝑥 ∈ 𝐼) | |
| 4 | 2idlval.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 5 | 4 | lidlmex 14281 | . . . 4 ⊢ (𝑥 ∈ 𝐼 → 𝑅 ∈ V) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑥 ∈ (𝐼 ∩ 𝐽) → 𝑅 ∈ V) |
| 7 | lidlex 14279 | . . . . . . . 8 ⊢ (𝑅 ∈ V → (LIdeal‘𝑅) ∈ V) | |
| 8 | 4, 7 | eqeltrid 2293 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝐼 ∈ V) |
| 9 | inex1g 4184 | . . . . . . 7 ⊢ (𝐼 ∈ V → (𝐼 ∩ 𝐽) ∈ V) | |
| 10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝐼 ∩ 𝐽) ∈ V) |
| 11 | fveq2 5583 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
| 12 | 11, 4 | eqtr4di 2257 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
| 13 | fveq2 5583 | . . . . . . . . . . 11 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
| 14 | 2idlval.o | . . . . . . . . . . 11 ⊢ 𝑂 = (oppr‘𝑅) | |
| 15 | 13, 14 | eqtr4di 2257 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
| 16 | 15 | fveq2d 5587 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
| 17 | 2idlval.j | . . . . . . . . 9 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 18 | 16, 17 | eqtr4di 2257 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
| 19 | 12, 18 | ineq12d 3376 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
| 20 | df-2idl 14306 | . . . . . . 7 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 21 | 19, 20 | fvmptg 5662 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ (𝐼 ∩ 𝐽) ∈ V) → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 22 | 10, 21 | mpdan 421 | . . . . 5 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 23 | 1, 22 | eqtrid 2251 | . . . 4 ⊢ (𝑅 ∈ V → 𝑇 = (𝐼 ∩ 𝐽)) |
| 24 | 23 | eleq2d 2276 | . . 3 ⊢ (𝑅 ∈ V → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (𝐼 ∩ 𝐽))) |
| 25 | 2, 6, 24 | pm5.21nii 706 | . 2 ⊢ (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (𝐼 ∩ 𝐽)) |
| 26 | 25 | eqriv 2203 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3166 ‘cfv 5276 opprcoppr 13873 LIdealclidl 14273 2Idealc2idl 14305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 df-2idl 14306 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |