![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2idlval | GIF version |
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
Ref | Expression |
---|---|
2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlval.t | . . . 4 ⊢ 𝑇 = (2Ideal‘𝑅) | |
2 | 1 | 2idlmex 13997 | . . 3 ⊢ (𝑥 ∈ 𝑇 → 𝑅 ∈ V) |
3 | elinel1 3345 | . . . 4 ⊢ (𝑥 ∈ (𝐼 ∩ 𝐽) → 𝑥 ∈ 𝐼) | |
4 | 2idlval.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
5 | 4 | lidlmex 13971 | . . . 4 ⊢ (𝑥 ∈ 𝐼 → 𝑅 ∈ V) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑥 ∈ (𝐼 ∩ 𝐽) → 𝑅 ∈ V) |
7 | lidlex 13969 | . . . . . . . 8 ⊢ (𝑅 ∈ V → (LIdeal‘𝑅) ∈ V) | |
8 | 4, 7 | eqeltrid 2280 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝐼 ∈ V) |
9 | inex1g 4165 | . . . . . . 7 ⊢ (𝐼 ∈ V → (𝐼 ∩ 𝐽) ∈ V) | |
10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝐼 ∩ 𝐽) ∈ V) |
11 | fveq2 5554 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
12 | 11, 4 | eqtr4di 2244 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
13 | fveq2 5554 | . . . . . . . . . . 11 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
14 | 2idlval.o | . . . . . . . . . . 11 ⊢ 𝑂 = (oppr‘𝑅) | |
15 | 13, 14 | eqtr4di 2244 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
16 | 15 | fveq2d 5558 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
17 | 2idlval.j | . . . . . . . . 9 ⊢ 𝐽 = (LIdeal‘𝑂) | |
18 | 16, 17 | eqtr4di 2244 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
19 | 12, 18 | ineq12d 3361 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
20 | df-2idl 13996 | . . . . . . 7 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
21 | 19, 20 | fvmptg 5633 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ (𝐼 ∩ 𝐽) ∈ V) → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
22 | 10, 21 | mpdan 421 | . . . . 5 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
23 | 1, 22 | eqtrid 2238 | . . . 4 ⊢ (𝑅 ∈ V → 𝑇 = (𝐼 ∩ 𝐽)) |
24 | 23 | eleq2d 2263 | . . 3 ⊢ (𝑅 ∈ V → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (𝐼 ∩ 𝐽))) |
25 | 2, 6, 24 | pm5.21nii 705 | . 2 ⊢ (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (𝐼 ∩ 𝐽)) |
26 | 25 | eqriv 2190 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ‘cfv 5254 opprcoppr 13563 LIdealclidl 13963 2Idealc2idl 13995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-mulr 12709 df-sca 12711 df-vsca 12712 df-ip 12713 df-lssm 13849 df-sra 13931 df-rgmod 13932 df-lidl 13965 df-2idl 13996 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |