| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idlval | GIF version | ||
| Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2idlval.i | ⊢ 𝐼 = (LIdeal‘𝑅) |
| 2idlval.o | ⊢ 𝑂 = (oppr‘𝑅) |
| 2idlval.j | ⊢ 𝐽 = (LIdeal‘𝑂) |
| 2idlval.t | ⊢ 𝑇 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| 2idlval | ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idlval.t | . . . 4 ⊢ 𝑇 = (2Ideal‘𝑅) | |
| 2 | 1 | 2idlmex 14473 | . . 3 ⊢ (𝑥 ∈ 𝑇 → 𝑅 ∈ V) |
| 3 | elinel1 3390 | . . . 4 ⊢ (𝑥 ∈ (𝐼 ∩ 𝐽) → 𝑥 ∈ 𝐼) | |
| 4 | 2idlval.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 5 | 4 | lidlmex 14447 | . . . 4 ⊢ (𝑥 ∈ 𝐼 → 𝑅 ∈ V) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑥 ∈ (𝐼 ∩ 𝐽) → 𝑅 ∈ V) |
| 7 | lidlex 14445 | . . . . . . . 8 ⊢ (𝑅 ∈ V → (LIdeal‘𝑅) ∈ V) | |
| 8 | 4, 7 | eqeltrid 2316 | . . . . . . 7 ⊢ (𝑅 ∈ V → 𝐼 ∈ V) |
| 9 | inex1g 4220 | . . . . . . 7 ⊢ (𝐼 ∈ V → (𝐼 ∩ 𝐽) ∈ V) | |
| 10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝐼 ∩ 𝐽) ∈ V) |
| 11 | fveq2 5629 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
| 12 | 11, 4 | eqtr4di 2280 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = 𝐼) |
| 13 | fveq2 5629 | . . . . . . . . . . 11 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = (oppr‘𝑅)) | |
| 14 | 2idlval.o | . . . . . . . . . . 11 ⊢ 𝑂 = (oppr‘𝑅) | |
| 15 | 13, 14 | eqtr4di 2280 | . . . . . . . . . 10 ⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑂) |
| 16 | 15 | fveq2d 5633 | . . . . . . . . 9 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = (LIdeal‘𝑂)) |
| 17 | 2idlval.j | . . . . . . . . 9 ⊢ 𝐽 = (LIdeal‘𝑂) | |
| 18 | 16, 17 | eqtr4di 2280 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (LIdeal‘(oppr‘𝑟)) = 𝐽) |
| 19 | 12, 18 | ineq12d 3406 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟))) = (𝐼 ∩ 𝐽)) |
| 20 | df-2idl 14472 | . . . . . . 7 ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr‘𝑟)))) | |
| 21 | 19, 20 | fvmptg 5712 | . . . . . 6 ⊢ ((𝑅 ∈ V ∧ (𝐼 ∩ 𝐽) ∈ V) → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 22 | 10, 21 | mpdan 421 | . . . . 5 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = (𝐼 ∩ 𝐽)) |
| 23 | 1, 22 | eqtrid 2274 | . . . 4 ⊢ (𝑅 ∈ V → 𝑇 = (𝐼 ∩ 𝐽)) |
| 24 | 23 | eleq2d 2299 | . . 3 ⊢ (𝑅 ∈ V → (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (𝐼 ∩ 𝐽))) |
| 25 | 2, 6, 24 | pm5.21nii 709 | . 2 ⊢ (𝑥 ∈ 𝑇 ↔ 𝑥 ∈ (𝐼 ∩ 𝐽)) |
| 26 | 25 | eqriv 2226 | 1 ⊢ 𝑇 = (𝐼 ∩ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ‘cfv 5318 opprcoppr 14038 LIdealclidl 14439 2Idealc2idl 14471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-mulr 13132 df-sca 13134 df-vsca 13135 df-ip 13136 df-lssm 14325 df-sra 14407 df-rgmod 14408 df-lidl 14441 df-2idl 14472 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |