| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idllidld | GIF version | ||
| Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| 2idllidld.1 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| Ref | Expression |
|---|---|
| 2idllidld | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idllidld.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | eqid 2206 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 3 | 2 | 2idlmex 14338 | . . . 4 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝑅 ∈ V) |
| 4 | eqid 2206 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 5 | eqid 2206 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 6 | eqid 2206 | . . . . 5 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 7 | 4, 5, 6, 2 | 2idlvalg 14340 | . . . 4 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 8 | 1, 3, 7 | 3syl 17 | . . 3 ⊢ (𝜑 → (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 9 | 1, 8 | eleqtrd 2285 | . 2 ⊢ (𝜑 → 𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 10 | 9 | elin1d 3366 | 1 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cin 3169 ‘cfv 5280 opprcoppr 13904 LIdealclidl 14304 2Idealc2idl 14336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-mulr 12998 df-sca 13000 df-vsca 13001 df-ip 13002 df-lssm 14190 df-sra 14272 df-rgmod 14273 df-lidl 14306 df-2idl 14337 |
| This theorem is referenced by: df2idl2 14346 2idlss 14351 qusmul2 14366 |
| Copyright terms: Public domain | W3C validator |