| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2idllidld | GIF version | ||
| Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| 2idllidld.1 | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| Ref | Expression |
|---|---|
| 2idllidld | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idllidld.1 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 2 | eqid 2204 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 3 | 2 | 2idlmex 14181 | . . . 4 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝑅 ∈ V) |
| 4 | eqid 2204 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 5 | eqid 2204 | . . . . 5 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 6 | eqid 2204 | . . . . 5 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 7 | 4, 5, 6, 2 | 2idlvalg 14183 | . . . 4 ⊢ (𝑅 ∈ V → (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 8 | 1, 3, 7 | 3syl 17 | . . 3 ⊢ (𝜑 → (2Ideal‘𝑅) = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 9 | 1, 8 | eleqtrd 2283 | . 2 ⊢ (𝜑 → 𝐼 ∈ ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅)))) |
| 10 | 9 | elin1d 3361 | 1 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∩ cin 3164 ‘cfv 5268 opprcoppr 13747 LIdealclidl 14147 2Idealc2idl 14179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-mulr 12842 df-sca 12844 df-vsca 12845 df-ip 12846 df-lssm 14033 df-sra 14115 df-rgmod 14116 df-lidl 14149 df-2idl 14180 |
| This theorem is referenced by: df2idl2 14189 2idlss 14194 qusmul2 14209 |
| Copyright terms: Public domain | W3C validator |