![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2idlbas | GIF version |
Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.) |
Ref | Expression |
---|---|
2idlbas.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
2idlbas.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
2idlbas.b | ⊢ 𝐵 = (Base‘𝐽) |
Ref | Expression |
---|---|
2idlbas | ⊢ (𝜑 → 𝐵 = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlbas.b | . 2 ⊢ 𝐵 = (Base‘𝐽) | |
2 | 2idlbas.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐽 = (𝑅 ↾s 𝐼)) |
4 | eqid 2189 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4 | a1i 9 | . . 3 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) |
6 | 2idlbas.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
7 | eqid 2189 | . . . . 5 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
8 | 7 | 2idlmex 13815 | . . . 4 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝑅 ∈ V) |
9 | 6, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
10 | 4, 7 | 2idlss 13826 | . . . 4 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
11 | 6, 10 | syl 14 | . . 3 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
12 | 3, 5, 9, 11 | ressbas2d 12577 | . 2 ⊢ (𝜑 → 𝐼 = (Base‘𝐽)) |
13 | 1, 12 | eqtr4id 2241 | 1 ⊢ (𝜑 → 𝐵 = 𝐼) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ⊆ wss 3144 ‘cfv 5235 (class class class)co 5895 Basecbs 12511 ↾s cress 12512 2Idealc2idl 13812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-pre-ltirr 7952 ax-pre-lttrn 7954 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-iress 12519 df-mulr 12600 df-sca 12602 df-vsca 12603 df-ip 12604 df-lssm 13666 df-sra 13748 df-rgmod 13749 df-lidl 13782 df-2idl 13813 |
This theorem is referenced by: 2idlelbas 13828 |
Copyright terms: Public domain | W3C validator |