Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2198 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2199 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: nnanq0 7395 1idprl 7527 1idpru 7528 axcnre 7818 fseq1p1m1 10025 expmulzap 10497 expubnd 10508 subsq 10557 bcm1k 10669 bcpasc 10675 crim 10796 rereb 10801 fsumparts 11407 isumshft 11427 geosergap 11443 efsub 11618 sincossq 11685 efieq1re 11708 bezoutlema 11928 bezoutlemb 11929 eucalg 11987 phiprmpw 12150 modprmn0modprm0 12184 coprimeprodsq 12185 pythagtriplem15 12206 pythagtriplem17 12208 fldivp1 12274 1arithlem4 12292 strsetsid 12423 setsslid 12440 upxp 12872 uptx 12874 lgsdilem 13528 2sqlem3 13553 |
Copyright terms: Public domain | W3C validator |