ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtrrd GIF version

Theorem 3eqtrrd 2202
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtrd.1 (𝜑𝐴 = 𝐵)
3eqtrd.2 (𝜑𝐵 = 𝐶)
3eqtrd.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
3eqtrrd (𝜑𝐷 = 𝐴)

Proof of Theorem 3eqtrrd
StepHypRef Expression
1 3eqtrd.1 . . 3 (𝜑𝐴 = 𝐵)
2 3eqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
31, 2eqtrd 2197 . 2 (𝜑𝐴 = 𝐶)
4 3eqtrd.3 . 2 (𝜑𝐶 = 𝐷)
53, 4eqtr2d 2198 1 (𝜑𝐷 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-4 1497  ax-17 1513  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-cleq 2157
This theorem is referenced by:  nnanq0  7393  1idprl  7525  1idpru  7526  axcnre  7816  fseq1p1m1  10023  expmulzap  10495  expubnd  10506  subsq  10555  bcm1k  10667  bcpasc  10673  crim  10794  rereb  10799  fsumparts  11405  isumshft  11425  geosergap  11441  efsub  11616  sincossq  11683  efieq1re  11706  bezoutlema  11926  bezoutlemb  11927  eucalg  11985  phiprmpw  12148  modprmn0modprm0  12182  coprimeprodsq  12183  pythagtriplem15  12204  pythagtriplem17  12206  fldivp1  12272  1arithlem4  12290  strsetsid  12421  setsslid  12438  upxp  12870  uptx  12872
  Copyright terms: Public domain W3C validator