| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2262 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2263 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: nnanq0 7641 1idprl 7773 1idpru 7774 axcnre 8064 fseq1p1m1 10286 seqf1oglem1 10736 expmulzap 10802 expubnd 10813 subsq 10863 bcm1k 10977 bcpasc 10983 crim 11364 rereb 11369 fsumparts 11976 isumshft 11996 geosergap 12012 efsub 12187 sincossq 12254 efieq1re 12278 bezoutlema 12515 bezoutlemb 12516 eucalg 12576 phiprmpw 12739 modprmn0modprm0 12774 coprimeprodsq 12775 pythagtriplem15 12796 pythagtriplem17 12798 fldivp1 12866 1arithlem4 12884 strsetsid 13060 setsslid 13078 pwsbas 13320 opprunitd 14068 cnfldsub 14533 upxp 14940 uptx 14942 perfectlem2 15668 lgsdilem 15700 gausslemma2dlem1a 15731 2sqlem3 15790 |
| Copyright terms: Public domain | W3C validator |