| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2240 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2241 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: nnanq0 7606 1idprl 7738 1idpru 7739 axcnre 8029 fseq1p1m1 10251 seqf1oglem1 10701 expmulzap 10767 expubnd 10778 subsq 10828 bcm1k 10942 bcpasc 10948 crim 11284 rereb 11289 fsumparts 11896 isumshft 11916 geosergap 11932 efsub 12107 sincossq 12174 efieq1re 12198 bezoutlema 12435 bezoutlemb 12436 eucalg 12496 phiprmpw 12659 modprmn0modprm0 12694 coprimeprodsq 12695 pythagtriplem15 12716 pythagtriplem17 12718 fldivp1 12786 1arithlem4 12804 strsetsid 12980 setsslid 12998 pwsbas 13239 opprunitd 13987 cnfldsub 14452 upxp 14859 uptx 14861 perfectlem2 15587 lgsdilem 15619 gausslemma2dlem1a 15650 2sqlem3 15709 |
| Copyright terms: Public domain | W3C validator |