Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2197 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2198 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-4 1497 ax-17 1513 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-cleq 2157 |
This theorem is referenced by: nnanq0 7393 1idprl 7525 1idpru 7526 axcnre 7816 fseq1p1m1 10023 expmulzap 10495 expubnd 10506 subsq 10555 bcm1k 10667 bcpasc 10673 crim 10794 rereb 10799 fsumparts 11405 isumshft 11425 geosergap 11441 efsub 11616 sincossq 11683 efieq1re 11706 bezoutlema 11926 bezoutlemb 11927 eucalg 11985 phiprmpw 12148 modprmn0modprm0 12182 coprimeprodsq 12183 pythagtriplem15 12204 pythagtriplem17 12206 fldivp1 12272 1arithlem4 12290 strsetsid 12421 setsslid 12438 upxp 12870 uptx 12872 |
Copyright terms: Public domain | W3C validator |