![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2226 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2227 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: nnanq0 7518 1idprl 7650 1idpru 7651 axcnre 7941 fseq1p1m1 10160 seqf1oglem1 10590 expmulzap 10656 expubnd 10667 subsq 10717 bcm1k 10831 bcpasc 10837 crim 11002 rereb 11007 fsumparts 11613 isumshft 11633 geosergap 11649 efsub 11824 sincossq 11891 efieq1re 11915 bezoutlema 12136 bezoutlemb 12137 eucalg 12197 phiprmpw 12360 modprmn0modprm0 12394 coprimeprodsq 12395 pythagtriplem15 12416 pythagtriplem17 12418 fldivp1 12486 1arithlem4 12504 strsetsid 12651 setsslid 12669 opprunitd 13606 cnfldsub 14063 upxp 14440 uptx 14442 lgsdilem 15143 gausslemma2dlem1a 15174 2sqlem3 15204 |
Copyright terms: Public domain | W3C validator |