| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2229 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2230 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: nnanq0 7542 1idprl 7674 1idpru 7675 axcnre 7965 fseq1p1m1 10186 seqf1oglem1 10628 expmulzap 10694 expubnd 10705 subsq 10755 bcm1k 10869 bcpasc 10875 crim 11040 rereb 11045 fsumparts 11652 isumshft 11672 geosergap 11688 efsub 11863 sincossq 11930 efieq1re 11954 bezoutlema 12191 bezoutlemb 12192 eucalg 12252 phiprmpw 12415 modprmn0modprm0 12450 coprimeprodsq 12451 pythagtriplem15 12472 pythagtriplem17 12474 fldivp1 12542 1arithlem4 12560 strsetsid 12736 setsslid 12754 pwsbas 12994 opprunitd 13742 cnfldsub 14207 upxp 14592 uptx 14594 perfectlem2 15320 lgsdilem 15352 gausslemma2dlem1a 15383 2sqlem3 15442 |
| Copyright terms: Public domain | W3C validator |