| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2229 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2230 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: nnanq0 7544 1idprl 7676 1idpru 7677 axcnre 7967 fseq1p1m1 10188 seqf1oglem1 10630 expmulzap 10696 expubnd 10707 subsq 10757 bcm1k 10871 bcpasc 10877 crim 11042 rereb 11047 fsumparts 11654 isumshft 11674 geosergap 11690 efsub 11865 sincossq 11932 efieq1re 11956 bezoutlema 12193 bezoutlemb 12194 eucalg 12254 phiprmpw 12417 modprmn0modprm0 12452 coprimeprodsq 12453 pythagtriplem15 12474 pythagtriplem17 12476 fldivp1 12544 1arithlem4 12562 strsetsid 12738 setsslid 12756 pwsbas 12996 opprunitd 13744 cnfldsub 14209 upxp 14616 uptx 14618 perfectlem2 15344 lgsdilem 15376 gausslemma2dlem1a 15407 2sqlem3 15466 |
| Copyright terms: Public domain | W3C validator |