| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2229 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2230 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: nnanq0 7525 1idprl 7657 1idpru 7658 axcnre 7948 fseq1p1m1 10169 seqf1oglem1 10611 expmulzap 10677 expubnd 10688 subsq 10738 bcm1k 10852 bcpasc 10858 crim 11023 rereb 11028 fsumparts 11635 isumshft 11655 geosergap 11671 efsub 11846 sincossq 11913 efieq1re 11937 bezoutlema 12166 bezoutlemb 12167 eucalg 12227 phiprmpw 12390 modprmn0modprm0 12425 coprimeprodsq 12426 pythagtriplem15 12447 pythagtriplem17 12449 fldivp1 12517 1arithlem4 12535 strsetsid 12711 setsslid 12729 opprunitd 13666 cnfldsub 14131 upxp 14508 uptx 14510 perfectlem2 15236 lgsdilem 15268 gausslemma2dlem1a 15299 2sqlem3 15358 |
| Copyright terms: Public domain | W3C validator |