![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2226 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2227 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: nnanq0 7520 1idprl 7652 1idpru 7653 axcnre 7943 fseq1p1m1 10163 seqf1oglem1 10593 expmulzap 10659 expubnd 10670 subsq 10720 bcm1k 10834 bcpasc 10840 crim 11005 rereb 11010 fsumparts 11616 isumshft 11636 geosergap 11652 efsub 11827 sincossq 11894 efieq1re 11918 bezoutlema 12139 bezoutlemb 12140 eucalg 12200 phiprmpw 12363 modprmn0modprm0 12397 coprimeprodsq 12398 pythagtriplem15 12419 pythagtriplem17 12421 fldivp1 12489 1arithlem4 12507 strsetsid 12654 setsslid 12672 opprunitd 13609 cnfldsub 14074 upxp 14451 uptx 14453 lgsdilem 15184 gausslemma2dlem1a 15215 2sqlem3 15274 |
Copyright terms: Public domain | W3C validator |