| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2238 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2239 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: nnanq0 7571 1idprl 7703 1idpru 7704 axcnre 7994 fseq1p1m1 10216 seqf1oglem1 10664 expmulzap 10730 expubnd 10741 subsq 10791 bcm1k 10905 bcpasc 10911 crim 11169 rereb 11174 fsumparts 11781 isumshft 11801 geosergap 11817 efsub 11992 sincossq 12059 efieq1re 12083 bezoutlema 12320 bezoutlemb 12321 eucalg 12381 phiprmpw 12544 modprmn0modprm0 12579 coprimeprodsq 12580 pythagtriplem15 12601 pythagtriplem17 12603 fldivp1 12671 1arithlem4 12689 strsetsid 12865 setsslid 12883 pwsbas 13124 opprunitd 13872 cnfldsub 14337 upxp 14744 uptx 14746 perfectlem2 15472 lgsdilem 15504 gausslemma2dlem1a 15535 2sqlem3 15594 |
| Copyright terms: Public domain | W3C validator |