| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| 3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eqtrd 2237 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | 3, 4 | eqtr2d 2238 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: nnanq0 7570 1idprl 7702 1idpru 7703 axcnre 7993 fseq1p1m1 10215 seqf1oglem1 10662 expmulzap 10728 expubnd 10739 subsq 10789 bcm1k 10903 bcpasc 10909 crim 11140 rereb 11145 fsumparts 11752 isumshft 11772 geosergap 11788 efsub 11963 sincossq 12030 efieq1re 12054 bezoutlema 12291 bezoutlemb 12292 eucalg 12352 phiprmpw 12515 modprmn0modprm0 12550 coprimeprodsq 12551 pythagtriplem15 12572 pythagtriplem17 12574 fldivp1 12642 1arithlem4 12660 strsetsid 12836 setsslid 12854 pwsbas 13095 opprunitd 13843 cnfldsub 14308 upxp 14715 uptx 14717 perfectlem2 15443 lgsdilem 15475 gausslemma2dlem1a 15506 2sqlem3 15565 |
| Copyright terms: Public domain | W3C validator |