![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
3eqtrd.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
3eqtrrd | ⊢ (𝜑 → 𝐷 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2210 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3eqtrd.3 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | eqtr2d 2211 | 1 ⊢ (𝜑 → 𝐷 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: nnanq0 7459 1idprl 7591 1idpru 7592 axcnre 7882 fseq1p1m1 10096 expmulzap 10568 expubnd 10579 subsq 10629 bcm1k 10742 bcpasc 10748 crim 10869 rereb 10874 fsumparts 11480 isumshft 11500 geosergap 11516 efsub 11691 sincossq 11758 efieq1re 11781 bezoutlema 12002 bezoutlemb 12003 eucalg 12061 phiprmpw 12224 modprmn0modprm0 12258 coprimeprodsq 12259 pythagtriplem15 12280 pythagtriplem17 12282 fldivp1 12348 1arithlem4 12366 strsetsid 12497 setsslid 12515 opprunitd 13284 cnfldsub 13554 upxp 13857 uptx 13859 lgsdilem 14513 2sqlem3 14549 |
Copyright terms: Public domain | W3C validator |