ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalg GIF version

Theorem eucalg 12000
Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the 1st member of the final state (𝑅𝑁) is equal to the gcd of the values comprising the input state 𝑀, 𝑁. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.)

Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalg.3 𝐴 = ⟨𝑀, 𝑁
Assertion
Ref Expression
eucalg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem eucalg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9508 . . . . . . . 8 0 = (ℤ‘0)
2 eucalg.2 . . . . . . . 8 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
3 0zd 9211 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℤ)
4 eucalg.3 . . . . . . . . 9 𝐴 = ⟨𝑀, 𝑁
5 opelxpi 4641 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ (ℕ0 × ℕ0))
64, 5eqeltrid 2257 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
7 eucalgval.1 . . . . . . . . . 10 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
87eucalgf 11996 . . . . . . . . 9 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
98a1i 9 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
101, 2, 3, 6, 9algrf 11986 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
11 ffvelrn 5626 . . . . . . 7 ((𝑅:ℕ0⟶(ℕ0 × ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑅𝑁) ∈ (ℕ0 × ℕ0))
1210, 11sylancom 418 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅𝑁) ∈ (ℕ0 × ℕ0))
13 1st2nd2 6151 . . . . . 6 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (𝑅𝑁) = ⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1412, 13syl 14 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅𝑁) = ⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1514fveq2d 5498 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ( gcd ‘⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩))
16 df-ov 5853 . . . 4 ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))) = ( gcd ‘⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1715, 16eqtr4di 2221 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))))
184fveq2i 5497 . . . . . . . 8 (2nd𝐴) = (2nd ‘⟨𝑀, 𝑁⟩)
19 op2ndg 6127 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
2018, 19eqtrid 2215 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd𝐴) = 𝑁)
2120fveq2d 5498 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘(2nd𝐴)) = (𝑅𝑁))
2221fveq2d 5498 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = (2nd ‘(𝑅𝑁)))
23 xp2nd 6142 . . . . . . . . 9 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
2423nn0zd 9319 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℤ)
25 uzid 9488 . . . . . . . 8 ((2nd𝐴) ∈ ℤ → (2nd𝐴) ∈ (ℤ‘(2nd𝐴)))
2624, 25syl 14 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ (ℤ‘(2nd𝐴)))
27 eqid 2170 . . . . . . . 8 (2nd𝐴) = (2nd𝐴)
287, 2, 27eucalgcvga 11999 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd𝐴) ∈ (ℤ‘(2nd𝐴)) → (2nd ‘(𝑅‘(2nd𝐴))) = 0))
2926, 28mpd 13 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = 0)
306, 29syl 14 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = 0)
3122, 30eqtr3d 2205 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅𝑁)) = 0)
3231oveq2d 5866 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))) = ((1st ‘(𝑅𝑁)) gcd 0))
33 xp1st 6141 . . . 4 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (1st ‘(𝑅𝑁)) ∈ ℕ0)
34 nn0gcdid0 11923 . . . 4 ((1st ‘(𝑅𝑁)) ∈ ℕ0 → ((1st ‘(𝑅𝑁)) gcd 0) = (1st ‘(𝑅𝑁)))
3512, 33, 343syl 17 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1st ‘(𝑅𝑁)) gcd 0) = (1st ‘(𝑅𝑁)))
3617, 32, 353eqtrrd 2208 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
377eucalginv 11997 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑧)) = ( gcd ‘𝑧))
388ffvelrni 5627 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
39 fvres 5518 . . . . . . 7 ((𝐸𝑧) ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = ( gcd ‘(𝐸𝑧)))
4038, 39syl 14 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = ( gcd ‘(𝐸𝑧)))
41 fvres 5518 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘𝑧) = ( gcd ‘𝑧))
4237, 40, 413eqtr4d 2213 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (( gcd ↾ (ℕ0 × ℕ0))‘𝑧))
432, 8, 42alginv 11988 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)))
446, 43sylancom 418 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)))
45 fvres 5518 . . . 4 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
4612, 45syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
47 0nn0 9137 . . . . 5 0 ∈ ℕ0
48 ffvelrn 5626 . . . . 5 ((𝑅:ℕ0⟶(ℕ0 × ℕ0) ∧ 0 ∈ ℕ0) → (𝑅‘0) ∈ (ℕ0 × ℕ0))
4910, 47, 48sylancl 411 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) ∈ (ℕ0 × ℕ0))
50 fvres 5518 . . . 4 ((𝑅‘0) ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0)))
5149, 50syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0)))
5244, 46, 513eqtr3d 2211 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ( gcd ‘(𝑅‘0)))
531, 2, 3, 6, 9ialgr0 11985 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) = 𝐴)
5453, 4eqtrdi 2219 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) = ⟨𝑀, 𝑁⟩)
5554fveq2d 5498 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅‘0)) = ( gcd ‘⟨𝑀, 𝑁⟩))
56 df-ov 5853 . . 3 (𝑀 gcd 𝑁) = ( gcd ‘⟨𝑀, 𝑁⟩)
5755, 56eqtr4di 2221 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅‘0)) = (𝑀 gcd 𝑁))
5836, 52, 573eqtrd 2207 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  ifcif 3525  {csn 3581  cop 3584   × cxp 4607  cres 4611  ccom 4613  wf 5192  cfv 5196  (class class class)co 5850  cmpo 5852  1st c1st 6114  2nd c2nd 6115  0cc0 7761  0cn0 9122  cz 9199  cuz 9474   mod cmo 10265  seqcseq 10388   gcd cgcd 11884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-sup 6957  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-dvds 11737  df-gcd 11885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator