ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalg GIF version

Theorem eucalg 12191
Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the 1st member of the final state (𝑅𝑁) is equal to the gcd of the values comprising the input state 𝑀, 𝑁. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.)

Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalg.3 𝐴 = ⟨𝑀, 𝑁
Assertion
Ref Expression
eucalg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem eucalg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9621 . . . . . . . 8 0 = (ℤ‘0)
2 eucalg.2 . . . . . . . 8 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
3 0zd 9323 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℤ)
4 eucalg.3 . . . . . . . . 9 𝐴 = ⟨𝑀, 𝑁
5 opelxpi 4689 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ (ℕ0 × ℕ0))
64, 5eqeltrid 2280 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
7 eucalgval.1 . . . . . . . . . 10 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
87eucalgf 12187 . . . . . . . . 9 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
98a1i 9 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
101, 2, 3, 6, 9algrf 12177 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
11 ffvelcdm 5687 . . . . . . 7 ((𝑅:ℕ0⟶(ℕ0 × ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑅𝑁) ∈ (ℕ0 × ℕ0))
1210, 11sylancom 420 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅𝑁) ∈ (ℕ0 × ℕ0))
13 1st2nd2 6223 . . . . . 6 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (𝑅𝑁) = ⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1412, 13syl 14 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅𝑁) = ⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1514fveq2d 5554 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ( gcd ‘⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩))
16 df-ov 5917 . . . 4 ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))) = ( gcd ‘⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1715, 16eqtr4di 2244 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))))
184fveq2i 5553 . . . . . . . 8 (2nd𝐴) = (2nd ‘⟨𝑀, 𝑁⟩)
19 op2ndg 6199 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
2018, 19eqtrid 2238 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd𝐴) = 𝑁)
2120fveq2d 5554 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘(2nd𝐴)) = (𝑅𝑁))
2221fveq2d 5554 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = (2nd ‘(𝑅𝑁)))
23 xp2nd 6214 . . . . . . . . 9 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
2423nn0zd 9431 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℤ)
25 uzid 9600 . . . . . . . 8 ((2nd𝐴) ∈ ℤ → (2nd𝐴) ∈ (ℤ‘(2nd𝐴)))
2624, 25syl 14 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ (ℤ‘(2nd𝐴)))
27 eqid 2193 . . . . . . . 8 (2nd𝐴) = (2nd𝐴)
287, 2, 27eucalgcvga 12190 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd𝐴) ∈ (ℤ‘(2nd𝐴)) → (2nd ‘(𝑅‘(2nd𝐴))) = 0))
2926, 28mpd 13 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = 0)
306, 29syl 14 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = 0)
3122, 30eqtr3d 2228 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅𝑁)) = 0)
3231oveq2d 5930 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))) = ((1st ‘(𝑅𝑁)) gcd 0))
33 xp1st 6213 . . . 4 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (1st ‘(𝑅𝑁)) ∈ ℕ0)
34 nn0gcdid0 12112 . . . 4 ((1st ‘(𝑅𝑁)) ∈ ℕ0 → ((1st ‘(𝑅𝑁)) gcd 0) = (1st ‘(𝑅𝑁)))
3512, 33, 343syl 17 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1st ‘(𝑅𝑁)) gcd 0) = (1st ‘(𝑅𝑁)))
3617, 32, 353eqtrrd 2231 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
377eucalginv 12188 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑧)) = ( gcd ‘𝑧))
388ffvelcdmi 5688 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
39 fvres 5574 . . . . . . 7 ((𝐸𝑧) ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = ( gcd ‘(𝐸𝑧)))
4038, 39syl 14 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = ( gcd ‘(𝐸𝑧)))
41 fvres 5574 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘𝑧) = ( gcd ‘𝑧))
4237, 40, 413eqtr4d 2236 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (( gcd ↾ (ℕ0 × ℕ0))‘𝑧))
432, 8, 42alginv 12179 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)))
446, 43sylancom 420 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)))
45 fvres 5574 . . . 4 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
4612, 45syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
47 0nn0 9249 . . . . 5 0 ∈ ℕ0
48 ffvelcdm 5687 . . . . 5 ((𝑅:ℕ0⟶(ℕ0 × ℕ0) ∧ 0 ∈ ℕ0) → (𝑅‘0) ∈ (ℕ0 × ℕ0))
4910, 47, 48sylancl 413 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) ∈ (ℕ0 × ℕ0))
50 fvres 5574 . . . 4 ((𝑅‘0) ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0)))
5149, 50syl 14 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0)))
5244, 46, 513eqtr3d 2234 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ( gcd ‘(𝑅‘0)))
531, 2, 3, 6, 9ialgr0 12176 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) = 𝐴)
5453, 4eqtrdi 2242 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) = ⟨𝑀, 𝑁⟩)
5554fveq2d 5554 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅‘0)) = ( gcd ‘⟨𝑀, 𝑁⟩))
56 df-ov 5917 . . 3 (𝑀 gcd 𝑁) = ( gcd ‘⟨𝑀, 𝑁⟩)
5755, 56eqtr4di 2244 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅‘0)) = (𝑀 gcd 𝑁))
5836, 52, 573eqtrd 2230 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  ifcif 3557  {csn 3618  cop 3621   × cxp 4655  cres 4659  ccom 4661  wf 5246  cfv 5250  (class class class)co 5914  cmpo 5916  1st c1st 6186  2nd c2nd 6187  0cc0 7866  0cn0 9234  cz 9311  cuz 9586   mod cmo 10387  seqcseq 10512   gcd cgcd 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4567  ax-iinf 4618  ax-cnex 7957  ax-resscn 7958  ax-1cn 7959  ax-1re 7960  ax-icn 7961  ax-addcl 7962  ax-addrcl 7963  ax-mulcl 7964  ax-mulrcl 7965  ax-addcom 7966  ax-mulcom 7967  ax-addass 7968  ax-mulass 7969  ax-distr 7970  ax-i2m1 7971  ax-0lt1 7972  ax-1rid 7973  ax-0id 7974  ax-rnegex 7975  ax-precex 7976  ax-cnre 7977  ax-pre-ltirr 7978  ax-pre-ltwlin 7979  ax-pre-lttrn 7980  ax-pre-apti 7981  ax-pre-ltadd 7982  ax-pre-mulgt0 7983  ax-pre-mulext 7984  ax-arch 7985  ax-caucvg 7986
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4621  df-xp 4663  df-rel 4664  df-cnv 4665  df-co 4666  df-dm 4667  df-rn 4668  df-res 4669  df-ima 4670  df-iota 5211  df-fun 5252  df-fn 5253  df-f 5254  df-f1 5255  df-fo 5256  df-f1o 5257  df-fv 5258  df-riota 5869  df-ov 5917  df-oprab 5918  df-mpo 5919  df-1st 6188  df-2nd 6189  df-recs 6353  df-frec 6439  df-sup 7037  df-pnf 8050  df-mnf 8051  df-xr 8052  df-ltxr 8053  df-le 8054  df-sub 8186  df-neg 8187  df-reap 8588  df-ap 8595  df-div 8686  df-inn 8977  df-2 9035  df-3 9036  df-4 9037  df-n0 9235  df-z 9312  df-uz 9587  df-q 9679  df-rp 9714  df-fz 10069  df-fzo 10203  df-fl 10333  df-mod 10388  df-seqfrec 10513  df-exp 10604  df-cj 10980  df-re 10981  df-im 10982  df-rsqrt 11136  df-abs 11137  df-dvds 11925  df-gcd 12074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator