| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sincossq | GIF version | ||
| Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
| Ref | Expression |
|---|---|
| sincossq | ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl 8307 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 2 | cosadd 12163 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) | |
| 3 | 1, 2 | mpdan 421 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) |
| 4 | negid 8354 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
| 5 | 4 | fveq2d 5603 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0)) |
| 6 | cos0 12156 | . . 3 ⊢ (cos‘0) = 1 | |
| 7 | 5, 6 | eqtrdi 2256 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1) |
| 8 | sincl 12132 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 9 | 8 | sqcld 10853 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
| 10 | coscl 12133 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 11 | 10 | sqcld 10853 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
| 12 | 9, 11 | addcomd 8258 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) |
| 13 | 10 | sqvald 10852 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴))) |
| 14 | cosneg 12153 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | |
| 15 | 14 | oveq2d 5983 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴))) |
| 16 | 13, 15 | eqtr4d 2243 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴))) |
| 17 | 8 | sqvald 10852 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴))) |
| 18 | sinneg 12152 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | |
| 19 | 18 | negeqd 8302 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴)) |
| 20 | 8 | negnegd 8409 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴)) |
| 21 | 19, 20 | eqtrd 2240 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴)) |
| 22 | 21 | oveq2d 5983 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴))) |
| 23 | 17, 22 | eqtr4d 2243 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴))) |
| 24 | 1 | sincld 12136 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ) |
| 25 | 8, 24 | mulneg2d 8519 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴))) |
| 26 | 23, 25 | eqtrd 2240 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴))) |
| 27 | 16, 26 | oveq12d 5985 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴)))) |
| 28 | 1 | coscld 12137 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ) |
| 29 | 10, 28 | mulcld 8128 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ) |
| 30 | 8, 24 | mulcld 8128 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ) |
| 31 | 29, 30 | negsubd 8424 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) |
| 32 | 12, 27, 31 | 3eqtrrd 2245 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
| 33 | 3, 7, 32 | 3eqtr3rd 2249 | 1 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 0cc0 7960 1c1 7961 + caddc 7963 · cmul 7965 − cmin 8278 -cneg 8279 2c2 9122 ↑cexp 10720 sincsin 12070 cosccos 12071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-ico 10051 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 |
| This theorem is referenced by: cos2t 12176 cos2tsin 12177 sinbnd 12178 cosbnd 12179 absefi 12195 sinhalfpilem 15378 sincos6thpi 15429 |
| Copyright terms: Public domain | W3C validator |