ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincossq GIF version

Theorem sincossq 11204
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 7779 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 cosadd 11193 . . 3 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
31, 2mpdan 413 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
4 negid 7826 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
54fveq2d 5344 . . 3 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0))
6 cos0 11186 . . 3 (cos‘0) = 1
75, 6syl6eq 2143 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1)
8 sincl 11162 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
98sqcld 10215 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
10 coscl 11163 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
1110sqcld 10215 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
129, 11addcomd 7730 . . 3 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
1310sqvald 10214 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴)))
14 cosneg 11183 . . . . . 6 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1514oveq2d 5706 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴)))
1613, 15eqtr4d 2130 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴)))
178sqvald 10214 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴)))
18 sinneg 11182 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
1918negeqd 7774 . . . . . . . 8 (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴))
208negnegd 7881 . . . . . . . 8 (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴))
2119, 20eqtrd 2127 . . . . . . 7 (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴))
2221oveq2d 5706 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴)))
2317, 22eqtr4d 2130 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴)))
241sincld 11166 . . . . . 6 (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ)
258, 24mulneg2d 7987 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴)))
2623, 25eqtrd 2127 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴)))
2716, 26oveq12d 5708 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))))
281coscld 11167 . . . . 5 (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ)
2910, 28mulcld 7605 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ)
308, 24mulcld 7605 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ)
3129, 30negsubd 7896 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
3212, 27, 313eqtrrd 2132 . 2 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
333, 7, 323eqtr3rd 2136 1 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wcel 1445  cfv 5049  (class class class)co 5690  cc 7445  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452  cmin 7750  -cneg 7751  2c2 8571  cexp 10085  sincsin 11099  cosccos 11100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-disj 3845  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-ico 9460  df-fz 9574  df-fzo 9703  df-iseq 10002  df-seq3 10003  df-exp 10086  df-fac 10265  df-bc 10287  df-ihash 10315  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-clim 10838  df-sumdc 10913  df-ef 11103  df-sin 11105  df-cos 11106
This theorem is referenced by:  cos2t  11206  cos2tsin  11207  sinbnd  11208  cosbnd  11209  absefi  11223
  Copyright terms: Public domain W3C validator