Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sincossq | GIF version |
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
sincossq | ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8098 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | cosadd 11678 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) | |
3 | 1, 2 | mpdan 418 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) |
4 | negid 8145 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
5 | 4 | fveq2d 5490 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0)) |
6 | cos0 11671 | . . 3 ⊢ (cos‘0) = 1 | |
7 | 5, 6 | eqtrdi 2215 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1) |
8 | sincl 11647 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
9 | 8 | sqcld 10586 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
10 | coscl 11648 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
11 | 10 | sqcld 10586 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
12 | 9, 11 | addcomd 8049 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) |
13 | 10 | sqvald 10585 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴))) |
14 | cosneg 11668 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | |
15 | 14 | oveq2d 5858 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴))) |
16 | 13, 15 | eqtr4d 2201 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴))) |
17 | 8 | sqvald 10585 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴))) |
18 | sinneg 11667 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | |
19 | 18 | negeqd 8093 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴)) |
20 | 8 | negnegd 8200 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴)) |
21 | 19, 20 | eqtrd 2198 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴)) |
22 | 21 | oveq2d 5858 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴))) |
23 | 17, 22 | eqtr4d 2201 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴))) |
24 | 1 | sincld 11651 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ) |
25 | 8, 24 | mulneg2d 8310 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴))) |
26 | 23, 25 | eqtrd 2198 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴))) |
27 | 16, 26 | oveq12d 5860 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴)))) |
28 | 1 | coscld 11652 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ) |
29 | 10, 28 | mulcld 7919 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ) |
30 | 8, 24 | mulcld 7919 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ) |
31 | 29, 30 | negsubd 8215 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) |
32 | 12, 27, 31 | 3eqtrrd 2203 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
33 | 3, 7, 32 | 3eqtr3rd 2207 | 1 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 − cmin 8069 -cneg 8070 2c2 8908 ↑cexp 10454 sincsin 11585 cosccos 11586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-sin 11591 df-cos 11592 |
This theorem is referenced by: cos2t 11691 cos2tsin 11692 sinbnd 11693 cosbnd 11694 absefi 11709 sinhalfpilem 13352 sincos6thpi 13403 |
Copyright terms: Public domain | W3C validator |