Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sincossq | GIF version |
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
sincossq | ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8119 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | cosadd 11700 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) | |
3 | 1, 2 | mpdan 419 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) |
4 | negid 8166 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
5 | 4 | fveq2d 5500 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0)) |
6 | cos0 11693 | . . 3 ⊢ (cos‘0) = 1 | |
7 | 5, 6 | eqtrdi 2219 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1) |
8 | sincl 11669 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
9 | 8 | sqcld 10607 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
10 | coscl 11670 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
11 | 10 | sqcld 10607 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
12 | 9, 11 | addcomd 8070 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) |
13 | 10 | sqvald 10606 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴))) |
14 | cosneg 11690 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | |
15 | 14 | oveq2d 5869 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴))) |
16 | 13, 15 | eqtr4d 2206 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴))) |
17 | 8 | sqvald 10606 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴))) |
18 | sinneg 11689 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | |
19 | 18 | negeqd 8114 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴)) |
20 | 8 | negnegd 8221 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴)) |
21 | 19, 20 | eqtrd 2203 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴)) |
22 | 21 | oveq2d 5869 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴))) |
23 | 17, 22 | eqtr4d 2206 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴))) |
24 | 1 | sincld 11673 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ) |
25 | 8, 24 | mulneg2d 8331 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴))) |
26 | 23, 25 | eqtrd 2203 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴))) |
27 | 16, 26 | oveq12d 5871 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴)))) |
28 | 1 | coscld 11674 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ) |
29 | 10, 28 | mulcld 7940 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ) |
30 | 8, 24 | mulcld 7940 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ) |
31 | 29, 30 | negsubd 8236 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴)))) |
32 | 12, 27, 31 | 3eqtrrd 2208 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
33 | 3, 7, 32 | 3eqtr3rd 2212 | 1 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 − cmin 8090 -cneg 8091 2c2 8929 ↑cexp 10475 sincsin 11607 cosccos 11608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-sin 11613 df-cos 11614 |
This theorem is referenced by: cos2t 11713 cos2tsin 11714 sinbnd 11715 cosbnd 11716 absefi 11731 sinhalfpilem 13506 sincos6thpi 13557 |
Copyright terms: Public domain | W3C validator |