ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincossq GIF version

Theorem sincossq 11462
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 7969 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 cosadd 11451 . . 3 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
31, 2mpdan 417 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
4 negid 8016 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
54fveq2d 5425 . . 3 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0))
6 cos0 11444 . . 3 (cos‘0) = 1
75, 6syl6eq 2188 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1)
8 sincl 11420 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
98sqcld 10429 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
10 coscl 11421 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
1110sqcld 10429 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
129, 11addcomd 7920 . . 3 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
1310sqvald 10428 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴)))
14 cosneg 11441 . . . . . 6 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1514oveq2d 5790 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴)))
1613, 15eqtr4d 2175 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴)))
178sqvald 10428 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴)))
18 sinneg 11440 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
1918negeqd 7964 . . . . . . . 8 (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴))
208negnegd 8071 . . . . . . . 8 (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴))
2119, 20eqtrd 2172 . . . . . . 7 (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴))
2221oveq2d 5790 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴)))
2317, 22eqtr4d 2175 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴)))
241sincld 11424 . . . . . 6 (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ)
258, 24mulneg2d 8181 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴)))
2623, 25eqtrd 2172 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴)))
2716, 26oveq12d 5792 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))))
281coscld 11425 . . . . 5 (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ)
2910, 28mulcld 7793 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ)
308, 24mulcld 7793 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ)
3129, 30negsubd 8086 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
3212, 27, 313eqtrrd 2177 . 2 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
333, 7, 323eqtr3rd 2181 1 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7625  0cc0 7627  1c1 7628   + caddc 7630   · cmul 7632  cmin 7940  -cneg 7941  2c2 8778  cexp 10299  sincsin 11357  cosccos 11358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-ico 9684  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364
This theorem is referenced by:  cos2t  11464  cos2tsin  11465  sinbnd  11466  cosbnd  11467  absefi  11482  sinhalfpilem  12885  sincos6thpi  12936
  Copyright terms: Public domain W3C validator