ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincossq GIF version

Theorem sincossq 12174
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 8307 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 cosadd 12163 . . 3 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
31, 2mpdan 421 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
4 negid 8354 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
54fveq2d 5603 . . 3 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0))
6 cos0 12156 . . 3 (cos‘0) = 1
75, 6eqtrdi 2256 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1)
8 sincl 12132 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
98sqcld 10853 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
10 coscl 12133 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
1110sqcld 10853 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
129, 11addcomd 8258 . . 3 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
1310sqvald 10852 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴)))
14 cosneg 12153 . . . . . 6 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1514oveq2d 5983 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴)))
1613, 15eqtr4d 2243 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴)))
178sqvald 10852 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴)))
18 sinneg 12152 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
1918negeqd 8302 . . . . . . . 8 (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴))
208negnegd 8409 . . . . . . . 8 (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴))
2119, 20eqtrd 2240 . . . . . . 7 (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴))
2221oveq2d 5983 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴)))
2317, 22eqtr4d 2243 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴)))
241sincld 12136 . . . . . 6 (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ)
258, 24mulneg2d 8519 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴)))
2623, 25eqtrd 2240 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴)))
2716, 26oveq12d 5985 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))))
281coscld 12137 . . . . 5 (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ)
2910, 28mulcld 8128 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ)
308, 24mulcld 8128 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ)
3129, 30negsubd 8424 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
3212, 27, 313eqtrrd 2245 . 2 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
333, 7, 323eqtr3rd 2249 1 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965  cmin 8278  -cneg 8279  2c2 9122  cexp 10720  sincsin 12070  cosccos 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780  df-ef 12074  df-sin 12076  df-cos 12077
This theorem is referenced by:  cos2t  12176  cos2tsin  12177  sinbnd  12178  cosbnd  12179  absefi  12195  sinhalfpilem  15378  sincos6thpi  15429
  Copyright terms: Public domain W3C validator