Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | |
3eqtrd.2 | |
3eqtrd.3 |
Ref | Expression |
---|---|
3eqtrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 | |
2 | 3eqtrd.2 | . . 3 | |
3 | 1, 2 | eqtrd 2203 | . 2 |
4 | 3eqtrd.3 | . 2 | |
5 | 3, 4 | eqtr2d 2204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: nnanq0 7420 1idprl 7552 1idpru 7553 axcnre 7843 fseq1p1m1 10050 expmulzap 10522 expubnd 10533 subsq 10582 bcm1k 10694 bcpasc 10700 crim 10822 rereb 10827 fsumparts 11433 isumshft 11453 geosergap 11469 efsub 11644 sincossq 11711 efieq1re 11734 bezoutlema 11954 bezoutlemb 11955 eucalg 12013 phiprmpw 12176 modprmn0modprm0 12210 coprimeprodsq 12211 pythagtriplem15 12232 pythagtriplem17 12234 fldivp1 12300 1arithlem4 12318 strsetsid 12449 setsslid 12466 upxp 13066 uptx 13068 lgsdilem 13722 2sqlem3 13747 |
Copyright terms: Public domain | W3C validator |