| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 |
|
| 3eqtrd.2 |
|
| 3eqtrd.3 |
|
| Ref | Expression |
|---|---|
| 3eqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 |
. . 3
| |
| 2 | 3eqtrd.2 |
. . 3
| |
| 3 | 1, 2 | eqtrd 2262 |
. 2
|
| 4 | 3eqtrd.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: nnanq0 7645 1idprl 7777 1idpru 7778 axcnre 8068 fseq1p1m1 10290 seqf1oglem1 10741 expmulzap 10807 expubnd 10818 subsq 10868 bcm1k 10982 bcpasc 10988 crim 11369 rereb 11374 fsumparts 11981 isumshft 12001 geosergap 12017 efsub 12192 sincossq 12259 efieq1re 12283 bezoutlema 12520 bezoutlemb 12521 eucalg 12581 phiprmpw 12744 modprmn0modprm0 12779 coprimeprodsq 12780 pythagtriplem15 12801 pythagtriplem17 12803 fldivp1 12871 1arithlem4 12889 strsetsid 13065 setsslid 13083 pwsbas 13325 opprunitd 14074 cnfldsub 14539 upxp 14946 uptx 14948 perfectlem2 15674 lgsdilem 15706 gausslemma2dlem1a 15737 2sqlem3 15796 |
| Copyright terms: Public domain | W3C validator |