| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 |
|
| 3eqtrd.2 |
|
| 3eqtrd.3 |
|
| Ref | Expression |
|---|---|
| 3eqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 |
. . 3
| |
| 2 | 3eqtrd.2 |
. . 3
| |
| 3 | 1, 2 | eqtrd 2229 |
. 2
|
| 4 | 3eqtrd.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: nnanq0 7527 1idprl 7659 1idpru 7660 axcnre 7950 fseq1p1m1 10171 seqf1oglem1 10613 expmulzap 10679 expubnd 10690 subsq 10740 bcm1k 10854 bcpasc 10860 crim 11025 rereb 11030 fsumparts 11637 isumshft 11657 geosergap 11673 efsub 11848 sincossq 11915 efieq1re 11939 bezoutlema 12176 bezoutlemb 12177 eucalg 12237 phiprmpw 12400 modprmn0modprm0 12435 coprimeprodsq 12436 pythagtriplem15 12457 pythagtriplem17 12459 fldivp1 12527 1arithlem4 12545 strsetsid 12721 setsslid 12739 opprunitd 13676 cnfldsub 14141 upxp 14518 uptx 14520 perfectlem2 15246 lgsdilem 15278 gausslemma2dlem1a 15309 2sqlem3 15368 |
| Copyright terms: Public domain | W3C validator |