![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtrrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrd 2120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtrd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2d 2121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-4 1445 ax-17 1464 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 |
This theorem is referenced by: nnanq0 7007 1idprl 7139 1idpru 7140 axcnre 7406 fseq1p1m1 9496 expmulzap 9989 expubnd 10000 subsq 10049 bcm1k 10156 bcpasc 10162 crim 10280 rereb 10285 fsumparts 10851 isumshft 10871 geosergap 10887 efsub 10958 sincossq 11026 efieq1re 11048 bezoutlema 11253 bezoutlemb 11254 eucialg 11306 phiprmpw 11463 |
Copyright terms: Public domain | W3C validator |