![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtrrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrd 2210 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtrd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2d 2211 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: nnanq0 7457 1idprl 7589 1idpru 7590 axcnre 7880 fseq1p1m1 10094 expmulzap 10566 expubnd 10577 subsq 10627 bcm1k 10740 bcpasc 10746 crim 10867 rereb 10872 fsumparts 11478 isumshft 11498 geosergap 11514 efsub 11689 sincossq 11756 efieq1re 11779 bezoutlema 12000 bezoutlemb 12001 eucalg 12059 phiprmpw 12222 modprmn0modprm0 12256 coprimeprodsq 12257 pythagtriplem15 12278 pythagtriplem17 12280 fldivp1 12346 1arithlem4 12364 strsetsid 12495 setsslid 12513 opprunitd 13279 cnfldsub 13472 upxp 13775 uptx 13777 lgsdilem 14431 2sqlem3 14467 |
Copyright terms: Public domain | W3C validator |