| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version | ||
| Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtrd.1 |
|
| 3eqtrd.2 |
|
| 3eqtrd.3 |
|
| Ref | Expression |
|---|---|
| 3eqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtrd.1 |
. . 3
| |
| 2 | 3eqtrd.2 |
. . 3
| |
| 3 | 1, 2 | eqtrd 2238 |
. 2
|
| 4 | 3eqtrd.3 |
. 2
| |
| 5 | 3, 4 | eqtr2d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: nnanq0 7573 1idprl 7705 1idpru 7706 axcnre 7996 fseq1p1m1 10218 seqf1oglem1 10666 expmulzap 10732 expubnd 10743 subsq 10793 bcm1k 10907 bcpasc 10913 crim 11202 rereb 11207 fsumparts 11814 isumshft 11834 geosergap 11850 efsub 12025 sincossq 12092 efieq1re 12116 bezoutlema 12353 bezoutlemb 12354 eucalg 12414 phiprmpw 12577 modprmn0modprm0 12612 coprimeprodsq 12613 pythagtriplem15 12634 pythagtriplem17 12636 fldivp1 12704 1arithlem4 12722 strsetsid 12898 setsslid 12916 pwsbas 13157 opprunitd 13905 cnfldsub 14370 upxp 14777 uptx 14779 perfectlem2 15505 lgsdilem 15537 gausslemma2dlem1a 15568 2sqlem3 15627 |
| Copyright terms: Public domain | W3C validator |