Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 | |
3eqtrd.2 | |
3eqtrd.3 |
Ref | Expression |
---|---|
3eqtrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 | . . 3 | |
2 | 3eqtrd.2 | . . 3 | |
3 | 1, 2 | eqtrd 2203 | . 2 |
4 | 3eqtrd.3 | . 2 | |
5 | 3, 4 | eqtr2d 2204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: nnanq0 7413 1idprl 7545 1idpru 7546 axcnre 7836 fseq1p1m1 10043 expmulzap 10515 expubnd 10526 subsq 10575 bcm1k 10687 bcpasc 10693 crim 10815 rereb 10820 fsumparts 11426 isumshft 11446 geosergap 11462 efsub 11637 sincossq 11704 efieq1re 11727 bezoutlema 11947 bezoutlemb 11948 eucalg 12006 phiprmpw 12169 modprmn0modprm0 12203 coprimeprodsq 12204 pythagtriplem15 12225 pythagtriplem17 12227 fldivp1 12293 1arithlem4 12311 strsetsid 12442 setsslid 12459 upxp 13031 uptx 13033 lgsdilem 13687 2sqlem3 13712 |
Copyright terms: Public domain | W3C validator |