![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtrrd | Unicode version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtrrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtrd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3eqtrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrd 2221 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtrd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr2d 2222 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-4 1520 ax-17 1536 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-cleq 2181 |
This theorem is referenced by: nnanq0 7474 1idprl 7606 1idpru 7607 axcnre 7897 fseq1p1m1 10111 expmulzap 10583 expubnd 10594 subsq 10644 bcm1k 10757 bcpasc 10763 crim 10884 rereb 10889 fsumparts 11495 isumshft 11515 geosergap 11531 efsub 11706 sincossq 11773 efieq1re 11796 bezoutlema 12017 bezoutlemb 12018 eucalg 12076 phiprmpw 12239 modprmn0modprm0 12273 coprimeprodsq 12274 pythagtriplem15 12295 pythagtriplem17 12297 fldivp1 12363 1arithlem4 12381 strsetsid 12512 setsslid 12530 opprunitd 13420 cnfldsub 13838 upxp 14155 uptx 14157 lgsdilem 14811 2sqlem3 14847 |
Copyright terms: Public domain | W3C validator |