ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap GIF version

Theorem geosergap 10961
Description: The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1 (𝜑𝐴 ∈ ℂ)
geosergap.2 (𝜑𝐴 # 1)
geoserg.3 (𝜑𝑀 ∈ ℕ0)
geoserg.4 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
geosergap (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geosergap
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
21nn0zd 8927 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 geoserg.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 9089 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
6 fzofig 9900 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
72, 5, 6syl2anc 404 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
8 ax-1cn 7499 . . . . . 6 1 ∈ ℂ
9 geoserg.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
10 subcl 7742 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
118, 9, 10sylancr 406 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
129adantr 271 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)
13 elfzouz 9623 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
14 eluznn0 9147 . . . . . . 7 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
151, 13, 14syl2an 284 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0)
1612, 15expcld 10147 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴𝑘) ∈ ℂ)
177, 11, 16fsummulc1 10904 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)))
18 1cnd 7565 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
1916, 18, 12subdid 7953 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)))
2016mulid1d 7566 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2112, 15expp1d 10148 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2221eqcomd 2094 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
2320, 22oveq12d 5684 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2419, 23eqtrd 2121 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2524sumeq2dv 10818 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
26 oveq2 5674 . . . . 5 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
27 oveq2 5674 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
28 oveq2 5674 . . . . 5 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
29 oveq2 5674 . . . . 5 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
309adantr 271 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
31 elfzuz 9497 . . . . . . 7 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ𝑀))
32 eluznn0 9147 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
331, 31, 32syl2an 284 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0)
3430, 33expcld 10147 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐴𝑗) ∈ ℂ)
3526, 27, 28, 29, 3, 34telfsumo 10921 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) − (𝐴𝑁)))
3617, 25, 353eqtrrd 2126 . . 3 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)))
379, 1expcld 10147 . . . . 5 (𝜑 → (𝐴𝑀) ∈ ℂ)
38 eluznn0 9147 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ0)
391, 3, 38syl2anc 404 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
409, 39expcld 10147 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
4137, 40subcld 7854 . . . 4 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) ∈ ℂ)
427, 16fsumcl 10855 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ∈ ℂ)
43 geosergap.2 . . . . . . 7 (𝜑𝐴 # 1)
44 1cnd 7565 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
45 apneg 8149 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ -𝐴 # -1))
469, 44, 45syl2anc 404 . . . . . . 7 (𝜑 → (𝐴 # 1 ↔ -𝐴 # -1))
4743, 46mpbid 146 . . . . . 6 (𝜑 → -𝐴 # -1)
489negcld 7841 . . . . . . 7 (𝜑 → -𝐴 ∈ ℂ)
4944negcld 7841 . . . . . . 7 (𝜑 → -1 ∈ ℂ)
50 apadd2 8147 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5148, 49, 44, 50syl3anc 1175 . . . . . 6 (𝜑 → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5247, 51mpbid 146 . . . . 5 (𝜑 → (1 + -𝐴) # (1 + -1))
5344, 9negsubd 7860 . . . . 5 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
54 1pneg1e0 8594 . . . . . 6 (1 + -1) = 0
5554a1i 9 . . . . 5 (𝜑 → (1 + -1) = 0)
5652, 53, 553brtr3d 3880 . . . 4 (𝜑 → (1 − 𝐴) # 0)
5741, 42, 11, 56divmulap3d 8353 . . 3 (𝜑 → ((((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ↔ ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴))))
5836, 57mpbird 166 . 2 (𝜑 → (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘))
5958eqcomd 2094 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439   class class class wbr 3851  cfv 5028  (class class class)co 5666  Fincfn 6511  cc 7409  0cc0 7411  1c1 7412   + caddc 7414   · cmul 7416  cmin 7714  -cneg 7715   # cap 8119   / cdiv 8200  0cn0 8734  cz 8811  cuz 9080  ...cfz 9485  ..^cfzo 9614  cexp 10015  Σcsu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  geoserap  10962  cvgratnnlemsumlt  10983
  Copyright terms: Public domain W3C validator