ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap GIF version

Theorem geosergap 12025
Description: The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1 (𝜑𝐴 ∈ ℂ)
geosergap.2 (𝜑𝐴 # 1)
geoserg.3 (𝜑𝑀 ∈ ℕ0)
geoserg.4 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
geosergap (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geosergap
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
21nn0zd 9575 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 geoserg.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 9739 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
6 fzofig 10662 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
72, 5, 6syl2anc 411 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
8 ax-1cn 8100 . . . . . 6 1 ∈ ℂ
9 geoserg.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
10 subcl 8353 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
118, 9, 10sylancr 414 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
129adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)
13 elfzouz 10355 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
14 eluznn0 9802 . . . . . . 7 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
151, 13, 14syl2an 289 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0)
1612, 15expcld 10903 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴𝑘) ∈ ℂ)
177, 11, 16fsummulc1 11968 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)))
18 1cnd 8170 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
1916, 18, 12subdid 8568 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)))
2016mulridd 8171 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2112, 15expp1d 10904 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2221eqcomd 2235 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
2320, 22oveq12d 6025 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2419, 23eqtrd 2262 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2524sumeq2dv 11887 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
26 oveq2 6015 . . . . 5 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
27 oveq2 6015 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
28 oveq2 6015 . . . . 5 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
29 oveq2 6015 . . . . 5 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
309adantr 276 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
31 elfzuz 10225 . . . . . . 7 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ𝑀))
32 eluznn0 9802 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
331, 31, 32syl2an 289 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0)
3430, 33expcld 10903 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐴𝑗) ∈ ℂ)
3526, 27, 28, 29, 3, 34telfsumo 11985 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) − (𝐴𝑁)))
3617, 25, 353eqtrrd 2267 . . 3 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)))
379, 1expcld 10903 . . . . 5 (𝜑 → (𝐴𝑀) ∈ ℂ)
38 eluznn0 9802 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ0)
391, 3, 38syl2anc 411 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
409, 39expcld 10903 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
4137, 40subcld 8465 . . . 4 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) ∈ ℂ)
427, 16fsumcl 11919 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ∈ ℂ)
43 geosergap.2 . . . . . . 7 (𝜑𝐴 # 1)
44 1cnd 8170 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
45 apneg 8766 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ -𝐴 # -1))
469, 44, 45syl2anc 411 . . . . . . 7 (𝜑 → (𝐴 # 1 ↔ -𝐴 # -1))
4743, 46mpbid 147 . . . . . 6 (𝜑 → -𝐴 # -1)
489negcld 8452 . . . . . . 7 (𝜑 → -𝐴 ∈ ℂ)
4944negcld 8452 . . . . . . 7 (𝜑 → -1 ∈ ℂ)
50 apadd2 8764 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5148, 49, 44, 50syl3anc 1271 . . . . . 6 (𝜑 → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5247, 51mpbid 147 . . . . 5 (𝜑 → (1 + -𝐴) # (1 + -1))
5344, 9negsubd 8471 . . . . 5 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
54 1pneg1e0 9229 . . . . . 6 (1 + -1) = 0
5554a1i 9 . . . . 5 (𝜑 → (1 + -1) = 0)
5652, 53, 553brtr3d 4114 . . . 4 (𝜑 → (1 − 𝐴) # 0)
5741, 42, 11, 56divmulap3d 8980 . . 3 (𝜑 → ((((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ↔ ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴))))
5836, 57mpbird 167 . 2 (𝜑 → (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘))
5958eqcomd 2235 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  Fincfn 6895  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012  cmin 8325  -cneg 8326   # cap 8736   / cdiv 8827  0cn0 9377  cz 9454  cuz 9730  ...cfz 10212  ..^cfzo 10346  cexp 10768  Σcsu 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873
This theorem is referenced by:  geoserap  12026  cvgratnnlemsumlt  12047  cvgcmp2nlemabs  16430
  Copyright terms: Public domain W3C validator