ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap GIF version

Theorem geosergap 11528
Description: The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1 (𝜑𝐴 ∈ ℂ)
geosergap.2 (𝜑𝐴 # 1)
geoserg.3 (𝜑𝑀 ∈ ℕ0)
geoserg.4 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
geosergap (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geosergap
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
21nn0zd 9387 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 geoserg.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 9551 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
6 fzofig 10446 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
72, 5, 6syl2anc 411 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
8 ax-1cn 7918 . . . . . 6 1 ∈ ℂ
9 geoserg.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
10 subcl 8170 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
118, 9, 10sylancr 414 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
129adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)
13 elfzouz 10165 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
14 eluznn0 9613 . . . . . . 7 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
151, 13, 14syl2an 289 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0)
1612, 15expcld 10668 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴𝑘) ∈ ℂ)
177, 11, 16fsummulc1 11471 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)))
18 1cnd 7987 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
1916, 18, 12subdid 8385 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)))
2016mulridd 7988 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2112, 15expp1d 10669 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2221eqcomd 2193 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
2320, 22oveq12d 5906 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2419, 23eqtrd 2220 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2524sumeq2dv 11390 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
26 oveq2 5896 . . . . 5 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
27 oveq2 5896 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
28 oveq2 5896 . . . . 5 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
29 oveq2 5896 . . . . 5 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
309adantr 276 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
31 elfzuz 10035 . . . . . . 7 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ𝑀))
32 eluznn0 9613 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
331, 31, 32syl2an 289 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0)
3430, 33expcld 10668 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐴𝑗) ∈ ℂ)
3526, 27, 28, 29, 3, 34telfsumo 11488 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) − (𝐴𝑁)))
3617, 25, 353eqtrrd 2225 . . 3 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)))
379, 1expcld 10668 . . . . 5 (𝜑 → (𝐴𝑀) ∈ ℂ)
38 eluznn0 9613 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ0)
391, 3, 38syl2anc 411 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
409, 39expcld 10668 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
4137, 40subcld 8282 . . . 4 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) ∈ ℂ)
427, 16fsumcl 11422 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ∈ ℂ)
43 geosergap.2 . . . . . . 7 (𝜑𝐴 # 1)
44 1cnd 7987 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
45 apneg 8582 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ -𝐴 # -1))
469, 44, 45syl2anc 411 . . . . . . 7 (𝜑 → (𝐴 # 1 ↔ -𝐴 # -1))
4743, 46mpbid 147 . . . . . 6 (𝜑 → -𝐴 # -1)
489negcld 8269 . . . . . . 7 (𝜑 → -𝐴 ∈ ℂ)
4944negcld 8269 . . . . . . 7 (𝜑 → -1 ∈ ℂ)
50 apadd2 8580 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5148, 49, 44, 50syl3anc 1248 . . . . . 6 (𝜑 → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5247, 51mpbid 147 . . . . 5 (𝜑 → (1 + -𝐴) # (1 + -1))
5344, 9negsubd 8288 . . . . 5 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
54 1pneg1e0 9044 . . . . . 6 (1 + -1) = 0
5554a1i 9 . . . . 5 (𝜑 → (1 + -1) = 0)
5652, 53, 553brtr3d 4046 . . . 4 (𝜑 → (1 − 𝐴) # 0)
5741, 42, 11, 56divmulap3d 8796 . . 3 (𝜑 → ((((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ↔ ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴))))
5836, 57mpbird 167 . 2 (𝜑 → (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘))
5958eqcomd 2193 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  Fincfn 6754  cc 7823  0cc0 7825  1c1 7826   + caddc 7828   · cmul 7830  cmin 8142  -cneg 8143   # cap 8552   / cdiv 8643  0cn0 9190  cz 9267  cuz 9542  ...cfz 10022  ..^cfzo 10156  cexp 10533  Σcsu 11375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by:  geoserap  11529  cvgratnnlemsumlt  11550  cvgcmp2nlemabs  15077
  Copyright terms: Public domain W3C validator