ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geosergap GIF version

Theorem geosergap 11469
Description: The value of the finite geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
geoserg.1 (𝜑𝐴 ∈ ℂ)
geosergap.2 (𝜑𝐴 # 1)
geoserg.3 (𝜑𝑀 ∈ ℕ0)
geoserg.4 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
geosergap (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem geosergap
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 geoserg.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
21nn0zd 9332 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3 geoserg.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 9496 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
6 fzofig 10388 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
72, 5, 6syl2anc 409 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
8 ax-1cn 7867 . . . . . 6 1 ∈ ℂ
9 geoserg.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
10 subcl 8118 . . . . . 6 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
118, 9, 10sylancr 412 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℂ)
129adantr 274 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)
13 elfzouz 10107 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
14 eluznn0 9558 . . . . . . 7 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
151, 13, 14syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0)
1612, 15expcld 10609 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴𝑘) ∈ ℂ)
177, 11, 16fsummulc1 11412 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)))
18 1cnd 7936 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
1916, 18, 12subdid 8333 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)))
2016mulid1d 7937 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2112, 15expp1d 10610 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2221eqcomd 2176 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · 𝐴) = (𝐴↑(𝑘 + 1)))
2320, 22oveq12d 5871 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝐴𝑘) · 1) − ((𝐴𝑘) · 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2419, 23eqtrd 2203 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝐴𝑘) · (1 − 𝐴)) = ((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
2524sumeq2dv 11331 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))))
26 oveq2 5861 . . . . 5 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
27 oveq2 5861 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
28 oveq2 5861 . . . . 5 (𝑗 = 𝑀 → (𝐴𝑗) = (𝐴𝑀))
29 oveq2 5861 . . . . 5 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
309adantr 274 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
31 elfzuz 9977 . . . . . . 7 (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ𝑀))
32 eluznn0 9558 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℕ0)
331, 31, 32syl2an 287 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0)
3430, 33expcld 10609 . . . . 5 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐴𝑗) ∈ ℂ)
3526, 27, 28, 29, 3, 34telfsumo 11429 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴𝑀) − (𝐴𝑁)))
3617, 25, 353eqtrrd 2208 . . 3 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴)))
379, 1expcld 10609 . . . . 5 (𝜑 → (𝐴𝑀) ∈ ℂ)
38 eluznn0 9558 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ0)
391, 3, 38syl2anc 409 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
409, 39expcld 10609 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
4137, 40subcld 8230 . . . 4 (𝜑 → ((𝐴𝑀) − (𝐴𝑁)) ∈ ℂ)
427, 16fsumcl 11363 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ∈ ℂ)
43 geosergap.2 . . . . . . 7 (𝜑𝐴 # 1)
44 1cnd 7936 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
45 apneg 8530 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ -𝐴 # -1))
469, 44, 45syl2anc 409 . . . . . . 7 (𝜑 → (𝐴 # 1 ↔ -𝐴 # -1))
4743, 46mpbid 146 . . . . . 6 (𝜑 → -𝐴 # -1)
489negcld 8217 . . . . . . 7 (𝜑 → -𝐴 ∈ ℂ)
4944negcld 8217 . . . . . . 7 (𝜑 → -1 ∈ ℂ)
50 apadd2 8528 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 1 ∈ ℂ) → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5148, 49, 44, 50syl3anc 1233 . . . . . 6 (𝜑 → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1)))
5247, 51mpbid 146 . . . . 5 (𝜑 → (1 + -𝐴) # (1 + -1))
5344, 9negsubd 8236 . . . . 5 (𝜑 → (1 + -𝐴) = (1 − 𝐴))
54 1pneg1e0 8989 . . . . . 6 (1 + -1) = 0
5554a1i 9 . . . . 5 (𝜑 → (1 + -1) = 0)
5652, 53, 553brtr3d 4020 . . . 4 (𝜑 → (1 − 𝐴) # 0)
5741, 42, 11, 56divmulap3d 8742 . . 3 (𝜑 → ((((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) ↔ ((𝐴𝑀) − (𝐴𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) · (1 − 𝐴))))
5836, 57mpbird 166 . 2 (𝜑 → (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘))
5958eqcomd 2176 1 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴𝑘) = (((𝐴𝑀) − (𝐴𝑁)) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  Fincfn 6718  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  cmin 8090  -cneg 8091   # cap 8500   / cdiv 8589  0cn0 9135  cz 9212  cuz 9487  ...cfz 9965  ..^cfzo 10098  cexp 10475  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  geoserap  11470  cvgratnnlemsumlt  11491  cvgcmp2nlemabs  14064
  Copyright terms: Public domain W3C validator