Step | Hyp | Ref
| Expression |
1 | | geoserg.3 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
2 | 1 | nn0zd 9311 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | geoserg.4 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | eluzelz 9475 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
6 | | fzofig 10367 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
7 | 2, 5, 6 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
8 | | ax-1cn 7846 |
. . . . . 6
⊢ 1 ∈
ℂ |
9 | | geoserg.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | | subcl 8097 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
11 | 8, 9, 10 | sylancr 411 |
. . . . 5
⊢ (𝜑 → (1 − 𝐴) ∈
ℂ) |
12 | 9 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) |
13 | | elfzouz 10086 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
14 | | eluznn0 9537 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
15 | 1, 13, 14 | syl2an 287 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0) |
16 | 12, 15 | expcld 10588 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
17 | 7, 11, 16 | fsummulc1 11390 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴))) |
18 | | 1cnd 7915 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
19 | 16, 18, 12 | subdid 8312 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴))) |
20 | 16 | mulid1d 7916 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
21 | 12, 15 | expp1d 10589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
22 | 21 | eqcomd 2171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 𝐴) = (𝐴↑(𝑘 + 1))) |
23 | 20, 22 | oveq12d 5860 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
24 | 19, 23 | eqtrd 2198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
25 | 24 | sumeq2dv 11309 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
26 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
27 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
28 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝑀 → (𝐴↑𝑗) = (𝐴↑𝑀)) |
29 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
30 | 9 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
31 | | elfzuz 9956 |
. . . . . . 7
⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) |
32 | | eluznn0 9537 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑗 ∈
(ℤ≥‘𝑀)) → 𝑗 ∈ ℕ0) |
33 | 1, 31, 32 | syl2an 287 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0) |
34 | 30, 33 | expcld 10588 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐴↑𝑗) ∈ ℂ) |
35 | 26, 27, 28, 29, 3, 34 | telfsumo 11407 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴↑𝑀) − (𝐴↑𝑁))) |
36 | 17, 25, 35 | 3eqtrrd 2203 |
. . 3
⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴))) |
37 | 9, 1 | expcld 10588 |
. . . . 5
⊢ (𝜑 → (𝐴↑𝑀) ∈ ℂ) |
38 | | eluznn0 9537 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) → 𝑁 ∈
ℕ0) |
39 | 1, 3, 38 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
40 | 9, 39 | expcld 10588 |
. . . . 5
⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
41 | 37, 40 | subcld 8209 |
. . . 4
⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) ∈ ℂ) |
42 | 7, 16 | fsumcl 11341 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ∈ ℂ) |
43 | | geosergap.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 # 1) |
44 | | 1cnd 7915 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
45 | | apneg 8509 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 # 1
↔ -𝐴 #
-1)) |
46 | 9, 44, 45 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → (𝐴 # 1 ↔ -𝐴 # -1)) |
47 | 43, 46 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → -𝐴 # -1) |
48 | 9 | negcld 8196 |
. . . . . . 7
⊢ (𝜑 → -𝐴 ∈ ℂ) |
49 | 44 | negcld 8196 |
. . . . . . 7
⊢ (𝜑 → -1 ∈
ℂ) |
50 | | apadd2 8507 |
. . . . . . 7
⊢ ((-𝐴 ∈ ℂ ∧ -1 ∈
ℂ ∧ 1 ∈ ℂ) → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1))) |
51 | 48, 49, 44, 50 | syl3anc 1228 |
. . . . . 6
⊢ (𝜑 → (-𝐴 # -1 ↔ (1 + -𝐴) # (1 + -1))) |
52 | 47, 51 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (1 + -𝐴) # (1 + -1)) |
53 | 44, 9 | negsubd 8215 |
. . . . 5
⊢ (𝜑 → (1 + -𝐴) = (1 − 𝐴)) |
54 | | 1pneg1e0 8968 |
. . . . . 6
⊢ (1 + -1)
= 0 |
55 | 54 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 + -1) =
0) |
56 | 52, 53, 55 | 3brtr3d 4013 |
. . . 4
⊢ (𝜑 → (1 − 𝐴) # 0) |
57 | 41, 42, 11, 56 | divmulap3d 8721 |
. . 3
⊢ (𝜑 → ((((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ↔ ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)))) |
58 | 36, 57 | mpbird 166 |
. 2
⊢ (𝜑 → (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘)) |
59 | 58 | eqcomd 2171 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |