Proof of Theorem recexprlemelu
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. 2
⊢ (𝐶 ∈ (2nd
‘𝐵) → 𝐶 ∈ V) | 
| 2 |   | ltrelnq 7432 | 
. . . . . . 7
⊢ 
<Q ⊆ (Q ×
Q) | 
| 3 | 2 | brel 4715 | 
. . . . . 6
⊢ (𝑦 <Q
𝐶 → (𝑦 ∈ Q ∧
𝐶 ∈
Q)) | 
| 4 | 3 | simprd 114 | 
. . . . 5
⊢ (𝑦 <Q
𝐶 → 𝐶 ∈ Q) | 
| 5 |   | elex 2774 | 
. . . . 5
⊢ (𝐶 ∈ Q →
𝐶 ∈
V) | 
| 6 | 4, 5 | syl 14 | 
. . . 4
⊢ (𝑦 <Q
𝐶 → 𝐶 ∈ V) | 
| 7 | 6 | adantr 276 | 
. . 3
⊢ ((𝑦 <Q
𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝐶 ∈ V) | 
| 8 | 7 | exlimiv 1612 | 
. 2
⊢
(∃𝑦(𝑦 <Q
𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝐶 ∈ V) | 
| 9 |   | breq2 4037 | 
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑦 <Q 𝑥 ↔ 𝑦 <Q 𝐶)) | 
| 10 | 9 | anbi1d 465 | 
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔ (𝑦 <Q 𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) | 
| 11 | 10 | exbidv 1839 | 
. . 3
⊢ (𝑥 = 𝐶 → (∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) | 
| 12 |   | recexpr.1 | 
. . . . 5
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | 
| 13 | 12 | fveq2i 5561 | 
. . . 4
⊢
(2nd ‘𝐵) = (2nd ‘〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉) | 
| 14 |   | nqex 7430 | 
. . . . . 6
⊢
Q ∈ V | 
| 15 | 2 | brel 4715 | 
. . . . . . . . . 10
⊢ (𝑥 <Q
𝑦 → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) | 
| 16 | 15 | simpld 112 | 
. . . . . . . . 9
⊢ (𝑥 <Q
𝑦 → 𝑥 ∈ Q) | 
| 17 | 16 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) | 
| 18 | 17 | exlimiv 1612 | 
. . . . . . 7
⊢
(∃𝑦(𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) | 
| 19 | 18 | abssi 3258 | 
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ⊆
Q | 
| 20 | 14, 19 | ssexi 4171 | 
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ∈ V | 
| 21 | 2 | brel 4715 | 
. . . . . . . . . 10
⊢ (𝑦 <Q
𝑥 → (𝑦 ∈ Q ∧
𝑥 ∈
Q)) | 
| 22 | 21 | simprd 114 | 
. . . . . . . . 9
⊢ (𝑦 <Q
𝑥 → 𝑥 ∈ Q) | 
| 23 | 22 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) | 
| 24 | 23 | exlimiv 1612 | 
. . . . . . 7
⊢
(∃𝑦(𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) | 
| 25 | 24 | abssi 3258 | 
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ⊆
Q | 
| 26 | 14, 25 | ssexi 4171 | 
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ∈ V | 
| 27 | 20, 26 | op2nd 6205 | 
. . . 4
⊢
(2nd ‘〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉) = {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} | 
| 28 | 13, 27 | eqtri 2217 | 
. . 3
⊢
(2nd ‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} | 
| 29 | 11, 28 | elab2g 2911 | 
. 2
⊢ (𝐶 ∈ V → (𝐶 ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q 𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) | 
| 30 | 1, 8, 29 | pm5.21nii 705 | 
1
⊢ (𝐶 ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q 𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) |