ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemelu GIF version

Theorem recexprlemelu 7182
Description: Membership in the upper cut of 𝐵. Lemma for recexpr 7197. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemelu (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem recexprlemelu
StepHypRef Expression
1 elex 2630 . 2 (𝐶 ∈ (2nd𝐵) → 𝐶 ∈ V)
2 ltrelnq 6924 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4490 . . . . . 6 (𝑦 <Q 𝐶 → (𝑦Q𝐶Q))
43simprd 112 . . . . 5 (𝑦 <Q 𝐶𝐶Q)
5 elex 2630 . . . . 5 (𝐶Q𝐶 ∈ V)
64, 5syl 14 . . . 4 (𝑦 <Q 𝐶𝐶 ∈ V)
76adantr 270 . . 3 ((𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝐶 ∈ V)
87exlimiv 1534 . 2 (∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝐶 ∈ V)
9 breq2 3849 . . . . 5 (𝑥 = 𝐶 → (𝑦 <Q 𝑥𝑦 <Q 𝐶))
109anbi1d 453 . . . 4 (𝑥 = 𝐶 → ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴))))
1110exbidv 1753 . . 3 (𝑥 = 𝐶 → (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴))))
12 recexpr.1 . . . . 5 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1312fveq2i 5308 . . . 4 (2nd𝐵) = (2nd ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩)
14 nqex 6922 . . . . . 6 Q ∈ V
152brel 4490 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
1615simpld 110 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
1716adantr 270 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1817exlimiv 1534 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1918abssi 3096 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q
2014, 19ssexi 3977 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ V
212brel 4490 . . . . . . . . . 10 (𝑦 <Q 𝑥 → (𝑦Q𝑥Q))
2221simprd 112 . . . . . . . . 9 (𝑦 <Q 𝑥𝑥Q)
2322adantr 270 . . . . . . . 8 ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2423exlimiv 1534 . . . . . . 7 (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2524abssi 3096 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q
2614, 25ssexi 3977 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ V
2720, 26op2nd 5918 . . . 4 (2nd ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩) = {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}
2813, 27eqtri 2108 . . 3 (2nd𝐵) = {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}
2911, 28elab2g 2762 . 2 (𝐶 ∈ V → (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴))))
301, 8, 29pm5.21nii 655 1 (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  {cab 2074  Vcvv 2619  cop 3449   class class class wbr 3845  cfv 5015  1st c1st 5909  2nd c2nd 5910  Qcnq 6839  *Qcrq 6843   <Q cltq 6844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-2nd 5912  df-qs 6298  df-ni 6863  df-nqqs 6907  df-ltnqqs 6912
This theorem is referenced by:  recexprlemm  7183  recexprlemopu  7186  recexprlemupu  7187  recexprlemdisj  7189  recexprlemloc  7190  recexprlem1ssu  7193  recexprlemss1u  7195
  Copyright terms: Public domain W3C validator