ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemelu GIF version

Theorem recexprlemelu 7622
Description: Membership in the upper cut of 𝐵. Lemma for recexpr 7637. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemelu (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem recexprlemelu
StepHypRef Expression
1 elex 2749 . 2 (𝐶 ∈ (2nd𝐵) → 𝐶 ∈ V)
2 ltrelnq 7364 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4679 . . . . . 6 (𝑦 <Q 𝐶 → (𝑦Q𝐶Q))
43simprd 114 . . . . 5 (𝑦 <Q 𝐶𝐶Q)
5 elex 2749 . . . . 5 (𝐶Q𝐶 ∈ V)
64, 5syl 14 . . . 4 (𝑦 <Q 𝐶𝐶 ∈ V)
76adantr 276 . . 3 ((𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝐶 ∈ V)
87exlimiv 1598 . 2 (∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝐶 ∈ V)
9 breq2 4008 . . . . 5 (𝑥 = 𝐶 → (𝑦 <Q 𝑥𝑦 <Q 𝐶))
109anbi1d 465 . . . 4 (𝑥 = 𝐶 → ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ (𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴))))
1110exbidv 1825 . . 3 (𝑥 = 𝐶 → (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴))))
12 recexpr.1 . . . . 5 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1312fveq2i 5519 . . . 4 (2nd𝐵) = (2nd ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩)
14 nqex 7362 . . . . . 6 Q ∈ V
152brel 4679 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
1615simpld 112 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
1716adantr 276 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1817exlimiv 1598 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1918abssi 3231 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q
2014, 19ssexi 4142 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ V
212brel 4679 . . . . . . . . . 10 (𝑦 <Q 𝑥 → (𝑦Q𝑥Q))
2221simprd 114 . . . . . . . . 9 (𝑦 <Q 𝑥𝑥Q)
2322adantr 276 . . . . . . . 8 ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2423exlimiv 1598 . . . . . . 7 (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2524abssi 3231 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q
2614, 25ssexi 4142 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ V
2720, 26op2nd 6148 . . . 4 (2nd ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩) = {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}
2813, 27eqtri 2198 . . 3 (2nd𝐵) = {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}
2911, 28elab2g 2885 . 2 (𝐶 ∈ V → (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴))))
301, 8, 29pm5.21nii 704 1 (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  {cab 2163  Vcvv 2738  cop 3596   class class class wbr 4004  cfv 5217  1st c1st 6139  2nd c2nd 6140  Qcnq 7279  *Qcrq 7283   <Q cltq 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-2nd 6142  df-qs 6541  df-ni 7303  df-nqqs 7347  df-ltnqqs 7352
This theorem is referenced by:  recexprlemm  7623  recexprlemopu  7626  recexprlemupu  7627  recexprlemdisj  7629  recexprlemloc  7630  recexprlem1ssu  7633  recexprlemss1u  7635
  Copyright terms: Public domain W3C validator