![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version |
Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 7397 | . 2 ⊢ Q ∈ V | |
2 | ltrelnq 7399 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4699 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
4 | 3 | simprd 114 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
5 | 4 | abssi 3245 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
6 | 1, 5 | ssexi 4159 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 {cab 2175 Vcvv 2752 class class class wbr 4021 Qcnq 7314 <Q cltq 7319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-iinf 4608 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-qs 6569 df-ni 7338 df-nqqs 7382 df-ltnqqs 7387 |
This theorem is referenced by: nqprl 7585 nqpru 7586 1prl 7589 1pru 7590 addnqprlemrl 7591 addnqprlemru 7592 addnqprlemfl 7593 addnqprlemfu 7594 mulnqprlemrl 7607 mulnqprlemru 7608 mulnqprlemfl 7609 mulnqprlemfu 7610 ltnqpr 7627 ltnqpri 7628 archpr 7677 cauappcvgprlemladdfu 7688 cauappcvgprlemladdfl 7689 cauappcvgprlem2 7694 caucvgprlemladdfu 7711 caucvgprlem2 7714 caucvgprprlemopu 7733 suplocexprlemloc 7755 |
Copyright terms: Public domain | W3C validator |