| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version | ||
| Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7447 | . 2 ⊢ Q ∈ V | |
| 2 | ltrelnq 7449 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4716 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
| 4 | 3 | simprd 114 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
| 5 | 4 | abssi 3259 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
| 6 | 1, 5 | ssexi 4172 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {cab 2182 Vcvv 2763 class class class wbr 4034 Qcnq 7364 <Q cltq 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7388 df-nqqs 7432 df-ltnqqs 7437 |
| This theorem is referenced by: nqprl 7635 nqpru 7636 1prl 7639 1pru 7640 addnqprlemrl 7641 addnqprlemru 7642 addnqprlemfl 7643 addnqprlemfu 7644 mulnqprlemrl 7657 mulnqprlemru 7658 mulnqprlemfl 7659 mulnqprlemfu 7660 ltnqpr 7677 ltnqpri 7678 archpr 7727 cauappcvgprlemladdfu 7738 cauappcvgprlemladdfl 7739 cauappcvgprlem2 7744 caucvgprlemladdfu 7761 caucvgprlem2 7764 caucvgprprlemopu 7783 suplocexprlemloc 7805 |
| Copyright terms: Public domain | W3C validator |