![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version |
Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 7425 | . 2 ⊢ Q ∈ V | |
2 | ltrelnq 7427 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4712 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
4 | 3 | simprd 114 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
5 | 4 | abssi 3255 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
6 | 1, 5 | ssexi 4168 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 {cab 2179 Vcvv 2760 class class class wbr 4030 Qcnq 7342 <Q cltq 7347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-qs 6595 df-ni 7366 df-nqqs 7410 df-ltnqqs 7415 |
This theorem is referenced by: nqprl 7613 nqpru 7614 1prl 7617 1pru 7618 addnqprlemrl 7619 addnqprlemru 7620 addnqprlemfl 7621 addnqprlemfu 7622 mulnqprlemrl 7635 mulnqprlemru 7636 mulnqprlemfl 7637 mulnqprlemfu 7638 ltnqpr 7655 ltnqpri 7656 archpr 7705 cauappcvgprlemladdfu 7716 cauappcvgprlemladdfl 7717 cauappcvgprlem2 7722 caucvgprlemladdfu 7739 caucvgprlem2 7742 caucvgprprlemopu 7761 suplocexprlemloc 7783 |
Copyright terms: Public domain | W3C validator |