Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version |
Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 7304 | . 2 ⊢ Q ∈ V | |
2 | ltrelnq 7306 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4656 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
4 | 3 | simprd 113 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
5 | 4 | abssi 3217 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
6 | 1, 5 | ssexi 4120 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 {cab 2151 Vcvv 2726 class class class wbr 3982 Qcnq 7221 <Q cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-qs 6507 df-ni 7245 df-nqqs 7289 df-ltnqqs 7294 |
This theorem is referenced by: nqprl 7492 nqpru 7493 1prl 7496 1pru 7497 addnqprlemrl 7498 addnqprlemru 7499 addnqprlemfl 7500 addnqprlemfu 7501 mulnqprlemrl 7514 mulnqprlemru 7515 mulnqprlemfl 7516 mulnqprlemfu 7517 ltnqpr 7534 ltnqpri 7535 archpr 7584 cauappcvgprlemladdfu 7595 cauappcvgprlemladdfl 7596 cauappcvgprlem2 7601 caucvgprlemladdfu 7618 caucvgprlem2 7621 caucvgprprlemopu 7640 suplocexprlemloc 7662 |
Copyright terms: Public domain | W3C validator |