| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version | ||
| Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7483 | . 2 ⊢ Q ∈ V | |
| 2 | ltrelnq 7485 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4731 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
| 4 | 3 | simprd 114 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
| 5 | 4 | abssi 3269 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
| 6 | 1, 5 | ssexi 4186 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 {cab 2192 Vcvv 2773 class class class wbr 4047 Qcnq 7400 <Q cltq 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-qs 6633 df-ni 7424 df-nqqs 7468 df-ltnqqs 7473 |
| This theorem is referenced by: nqprl 7671 nqpru 7672 1prl 7675 1pru 7676 addnqprlemrl 7677 addnqprlemru 7678 addnqprlemfl 7679 addnqprlemfu 7680 mulnqprlemrl 7693 mulnqprlemru 7694 mulnqprlemfl 7695 mulnqprlemfu 7696 ltnqpr 7713 ltnqpri 7714 archpr 7763 cauappcvgprlemladdfu 7774 cauappcvgprlemladdfl 7775 cauappcvgprlem2 7780 caucvgprlemladdfu 7797 caucvgprlem2 7800 caucvgprprlemopu 7819 suplocexprlemloc 7841 |
| Copyright terms: Public domain | W3C validator |