| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version | ||
| Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7430 | . 2 ⊢ Q ∈ V | |
| 2 | ltrelnq 7432 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4715 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
| 4 | 3 | simprd 114 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
| 5 | 4 | abssi 3258 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
| 6 | 1, 5 | ssexi 4171 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {cab 2182 Vcvv 2763 class class class wbr 4033 Qcnq 7347 <Q cltq 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-qs 6598 df-ni 7371 df-nqqs 7415 df-ltnqqs 7420 |
| This theorem is referenced by: nqprl 7618 nqpru 7619 1prl 7622 1pru 7623 addnqprlemrl 7624 addnqprlemru 7625 addnqprlemfl 7626 addnqprlemfu 7627 mulnqprlemrl 7640 mulnqprlemru 7641 mulnqprlemfl 7642 mulnqprlemfu 7643 ltnqpr 7660 ltnqpri 7661 archpr 7710 cauappcvgprlemladdfu 7721 cauappcvgprlemladdfl 7722 cauappcvgprlem2 7727 caucvgprlemladdfu 7744 caucvgprlem2 7747 caucvgprprlemopu 7766 suplocexprlemloc 7788 |
| Copyright terms: Public domain | W3C validator |