| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtnqex | GIF version | ||
| Description: The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| gtnqex | ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7518 | . 2 ⊢ Q ∈ V | |
| 2 | ltrelnq 7520 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4748 | . . . 4 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
| 4 | 3 | simprd 114 | . . 3 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
| 5 | 4 | abssi 3279 | . 2 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
| 6 | 1, 5 | ssexi 4201 | 1 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 {cab 2195 Vcvv 2779 class class class wbr 4062 Qcnq 7435 <Q cltq 7440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-qs 6656 df-ni 7459 df-nqqs 7503 df-ltnqqs 7508 |
| This theorem is referenced by: nqprl 7706 nqpru 7707 1prl 7710 1pru 7711 addnqprlemrl 7712 addnqprlemru 7713 addnqprlemfl 7714 addnqprlemfu 7715 mulnqprlemrl 7728 mulnqprlemru 7729 mulnqprlemfl 7730 mulnqprlemfu 7731 ltnqpr 7748 ltnqpri 7749 archpr 7798 cauappcvgprlemladdfu 7809 cauappcvgprlemladdfl 7810 cauappcvgprlem2 7815 caucvgprlemladdfu 7832 caucvgprlem2 7835 caucvgprprlemopu 7854 suplocexprlemloc 7876 |
| Copyright terms: Public domain | W3C validator |