ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell GIF version

Theorem recexprlemell 7557
Description: Membership in the lower cut of 𝐵. Lemma for recexpr 7573. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemell (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2735 . 2 (𝐶 ∈ (1st𝐵) → 𝐶 ∈ V)
2 ltrelnq 7300 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4653 . . . . . 6 (𝐶 <Q 𝑦 → (𝐶Q𝑦Q))
43simpld 111 . . . . 5 (𝐶 <Q 𝑦𝐶Q)
5 elex 2735 . . . . 5 (𝐶Q𝐶 ∈ V)
64, 5syl 14 . . . 4 (𝐶 <Q 𝑦𝐶 ∈ V)
76adantr 274 . . 3 ((𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝐶 ∈ V)
87exlimiv 1585 . 2 (∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝐶 ∈ V)
9 breq1 3982 . . . . 5 (𝑥 = 𝐶 → (𝑥 <Q 𝑦𝐶 <Q 𝑦))
109anbi1d 461 . . . 4 (𝑥 = 𝐶 → ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
1110exbidv 1812 . . 3 (𝑥 = 𝐶 → (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
12 recexpr.1 . . . . 5 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1312fveq2i 5486 . . . 4 (1st𝐵) = (1st ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩)
14 nqex 7298 . . . . . 6 Q ∈ V
152brel 4653 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
1615simpld 111 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
1716adantr 274 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1817exlimiv 1585 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1918abssi 3215 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q
2014, 19ssexi 4117 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ V
212brel 4653 . . . . . . . . . 10 (𝑦 <Q 𝑥 → (𝑦Q𝑥Q))
2221simprd 113 . . . . . . . . 9 (𝑦 <Q 𝑥𝑥Q)
2322adantr 274 . . . . . . . 8 ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2423exlimiv 1585 . . . . . . 7 (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2524abssi 3215 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q
2614, 25ssexi 4117 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ V
2720, 26op1st 6109 . . . 4 (1st ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}
2813, 27eqtri 2185 . . 3 (1st𝐵) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}
2911, 28elab2g 2871 . 2 (𝐶 ∈ V → (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
301, 8, 29pm5.21nii 694 1 (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1342  wex 1479  wcel 2135  {cab 2150  Vcvv 2724  cop 3576   class class class wbr 3979  cfv 5185  1st c1st 6101  2nd c2nd 6102  Qcnq 7215  *Qcrq 7219   <Q cltq 7220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-iinf 4562
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-id 4268  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-1st 6103  df-qs 6501  df-ni 7239  df-nqqs 7283  df-ltnqqs 7288
This theorem is referenced by:  recexprlemm  7559  recexprlemopl  7560  recexprlemlol  7561  recexprlemdisj  7565  recexprlemloc  7566  recexprlem1ssl  7568  recexprlemss1l  7570
  Copyright terms: Public domain W3C validator