Proof of Theorem recexprlemell
| Step | Hyp | Ref
| Expression |
| 1 | | elex 2774 |
. 2
⊢ (𝐶 ∈ (1st
‘𝐵) → 𝐶 ∈ V) |
| 2 | | ltrelnq 7432 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
| 3 | 2 | brel 4715 |
. . . . . 6
⊢ (𝐶 <Q
𝑦 → (𝐶 ∈ Q ∧ 𝑦 ∈
Q)) |
| 4 | 3 | simpld 112 |
. . . . 5
⊢ (𝐶 <Q
𝑦 → 𝐶 ∈ Q) |
| 5 | | elex 2774 |
. . . . 5
⊢ (𝐶 ∈ Q →
𝐶 ∈
V) |
| 6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝐶 <Q
𝑦 → 𝐶 ∈ V) |
| 7 | 6 | adantr 276 |
. . 3
⊢ ((𝐶 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝐶 ∈ V) |
| 8 | 7 | exlimiv 1612 |
. 2
⊢
(∃𝑦(𝐶 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝐶 ∈ V) |
| 9 | | breq1 4036 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 <Q 𝑦 ↔ 𝐶 <Q 𝑦)) |
| 10 | 9 | anbi1d 465 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ (𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 11 | 10 | exbidv 1839 |
. . 3
⊢ (𝑥 = 𝐶 → (∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 12 | | recexpr.1 |
. . . . 5
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
| 13 | 12 | fveq2i 5561 |
. . . 4
⊢
(1st ‘𝐵) = (1st ‘〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉) |
| 14 | | nqex 7430 |
. . . . . 6
⊢
Q ∈ V |
| 15 | 2 | brel 4715 |
. . . . . . . . . 10
⊢ (𝑥 <Q
𝑦 → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) |
| 16 | 15 | simpld 112 |
. . . . . . . . 9
⊢ (𝑥 <Q
𝑦 → 𝑥 ∈ Q) |
| 17 | 16 | adantr 276 |
. . . . . . . 8
⊢ ((𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) |
| 18 | 17 | exlimiv 1612 |
. . . . . . 7
⊢
(∃𝑦(𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) |
| 19 | 18 | abssi 3258 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ⊆
Q |
| 20 | 14, 19 | ssexi 4171 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ∈ V |
| 21 | 2 | brel 4715 |
. . . . . . . . . 10
⊢ (𝑦 <Q
𝑥 → (𝑦 ∈ Q ∧
𝑥 ∈
Q)) |
| 22 | 21 | simprd 114 |
. . . . . . . . 9
⊢ (𝑦 <Q
𝑥 → 𝑥 ∈ Q) |
| 23 | 22 | adantr 276 |
. . . . . . . 8
⊢ ((𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
| 24 | 23 | exlimiv 1612 |
. . . . . . 7
⊢
(∃𝑦(𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
| 25 | 24 | abssi 3258 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ⊆
Q |
| 26 | 14, 25 | ssexi 4171 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ∈ V |
| 27 | 20, 26 | op1st 6204 |
. . . 4
⊢
(1st ‘〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} |
| 28 | 13, 27 | eqtri 2217 |
. . 3
⊢
(1st ‘𝐵) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} |
| 29 | 11, 28 | elab2g 2911 |
. 2
⊢ (𝐶 ∈ V → (𝐶 ∈ (1st
‘𝐵) ↔
∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
| 30 | 1, 8, 29 | pm5.21nii 705 |
1
⊢ (𝐶 ∈ (1st
‘𝐵) ↔
∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |