ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell GIF version

Theorem recexprlemell 7623
Description: Membership in the lower cut of 𝐵. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemell (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2750 . 2 (𝐶 ∈ (1st𝐵) → 𝐶 ∈ V)
2 ltrelnq 7366 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4680 . . . . . 6 (𝐶 <Q 𝑦 → (𝐶Q𝑦Q))
43simpld 112 . . . . 5 (𝐶 <Q 𝑦𝐶Q)
5 elex 2750 . . . . 5 (𝐶Q𝐶 ∈ V)
64, 5syl 14 . . . 4 (𝐶 <Q 𝑦𝐶 ∈ V)
76adantr 276 . . 3 ((𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝐶 ∈ V)
87exlimiv 1598 . 2 (∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝐶 ∈ V)
9 breq1 4008 . . . . 5 (𝑥 = 𝐶 → (𝑥 <Q 𝑦𝐶 <Q 𝑦))
109anbi1d 465 . . . 4 (𝑥 = 𝐶 → ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
1110exbidv 1825 . . 3 (𝑥 = 𝐶 → (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
12 recexpr.1 . . . . 5 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1312fveq2i 5520 . . . 4 (1st𝐵) = (1st ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩)
14 nqex 7364 . . . . . 6 Q ∈ V
152brel 4680 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
1615simpld 112 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
1716adantr 276 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1817exlimiv 1598 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1918abssi 3232 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q
2014, 19ssexi 4143 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ V
212brel 4680 . . . . . . . . . 10 (𝑦 <Q 𝑥 → (𝑦Q𝑥Q))
2221simprd 114 . . . . . . . . 9 (𝑦 <Q 𝑥𝑥Q)
2322adantr 276 . . . . . . . 8 ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2423exlimiv 1598 . . . . . . 7 (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2524abssi 3232 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q
2614, 25ssexi 4143 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ V
2720, 26op1st 6149 . . . 4 (1st ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}
2813, 27eqtri 2198 . . 3 (1st𝐵) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}
2911, 28elab2g 2886 . 2 (𝐶 ∈ V → (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
301, 8, 29pm5.21nii 704 1 (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  {cab 2163  Vcvv 2739  cop 3597   class class class wbr 4005  cfv 5218  1st c1st 6141  2nd c2nd 6142  Qcnq 7281  *Qcrq 7285   <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-qs 6543  df-ni 7305  df-nqqs 7349  df-ltnqqs 7354
This theorem is referenced by:  recexprlemm  7625  recexprlemopl  7626  recexprlemlol  7627  recexprlemdisj  7631  recexprlemloc  7632  recexprlem1ssl  7634  recexprlemss1l  7636
  Copyright terms: Public domain W3C validator