ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemell GIF version

Theorem recexprlemell 7689
Description: Membership in the lower cut of 𝐵. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemell (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem recexprlemell
StepHypRef Expression
1 elex 2774 . 2 (𝐶 ∈ (1st𝐵) → 𝐶 ∈ V)
2 ltrelnq 7432 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4715 . . . . . 6 (𝐶 <Q 𝑦 → (𝐶Q𝑦Q))
43simpld 112 . . . . 5 (𝐶 <Q 𝑦𝐶Q)
5 elex 2774 . . . . 5 (𝐶Q𝐶 ∈ V)
64, 5syl 14 . . . 4 (𝐶 <Q 𝑦𝐶 ∈ V)
76adantr 276 . . 3 ((𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝐶 ∈ V)
87exlimiv 1612 . 2 (∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝐶 ∈ V)
9 breq1 4036 . . . . 5 (𝑥 = 𝐶 → (𝑥 <Q 𝑦𝐶 <Q 𝑦))
109anbi1d 465 . . . 4 (𝑥 = 𝐶 → ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
1110exbidv 1839 . . 3 (𝑥 = 𝐶 → (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
12 recexpr.1 . . . . 5 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
1312fveq2i 5561 . . . 4 (1st𝐵) = (1st ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩)
14 nqex 7430 . . . . . 6 Q ∈ V
152brel 4715 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
1615simpld 112 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
1716adantr 276 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1817exlimiv 1612 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑥Q)
1918abssi 3258 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ⊆ Q
2014, 19ssexi 4171 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))} ∈ V
212brel 4715 . . . . . . . . . 10 (𝑦 <Q 𝑥 → (𝑦Q𝑥Q))
2221simprd 114 . . . . . . . . 9 (𝑦 <Q 𝑥𝑥Q)
2322adantr 276 . . . . . . . 8 ((𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2423exlimiv 1612 . . . . . . 7 (∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴)) → 𝑥Q)
2524abssi 3258 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ⊆ Q
2614, 25ssexi 4171 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))} ∈ V
2720, 26op1st 6204 . . . 4 (1st ‘⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}
2813, 27eqtri 2217 . . 3 (1st𝐵) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}
2911, 28elab2g 2911 . 2 (𝐶 ∈ V → (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
301, 8, 29pm5.21nii 705 1 (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  {cab 2182  Vcvv 2763  cop 3625   class class class wbr 4033  cfv 5258  1st c1st 6196  2nd c2nd 6197  Qcnq 7347  *Qcrq 7351   <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-qs 6598  df-ni 7371  df-nqqs 7415  df-ltnqqs 7420
This theorem is referenced by:  recexprlemm  7691  recexprlemopl  7692  recexprlemlol  7693  recexprlemdisj  7697  recexprlemloc  7698  recexprlem1ssl  7700  recexprlemss1l  7702
  Copyright terms: Public domain W3C validator