Proof of Theorem recexprlemell
Step | Hyp | Ref
| Expression |
1 | | elex 2737 |
. 2
⊢ (𝐶 ∈ (1st
‘𝐵) → 𝐶 ∈ V) |
2 | | ltrelnq 7306 |
. . . . . . 7
⊢
<Q ⊆ (Q ×
Q) |
3 | 2 | brel 4656 |
. . . . . 6
⊢ (𝐶 <Q
𝑦 → (𝐶 ∈ Q ∧ 𝑦 ∈
Q)) |
4 | 3 | simpld 111 |
. . . . 5
⊢ (𝐶 <Q
𝑦 → 𝐶 ∈ Q) |
5 | | elex 2737 |
. . . . 5
⊢ (𝐶 ∈ Q →
𝐶 ∈
V) |
6 | 4, 5 | syl 14 |
. . . 4
⊢ (𝐶 <Q
𝑦 → 𝐶 ∈ V) |
7 | 6 | adantr 274 |
. . 3
⊢ ((𝐶 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝐶 ∈ V) |
8 | 7 | exlimiv 1586 |
. 2
⊢
(∃𝑦(𝐶 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝐶 ∈ V) |
9 | | breq1 3985 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 <Q 𝑦 ↔ 𝐶 <Q 𝑦)) |
10 | 9 | anbi1d 461 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ (𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
11 | 10 | exbidv 1813 |
. . 3
⊢ (𝑥 = 𝐶 → (∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
12 | | recexpr.1 |
. . . . 5
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
13 | 12 | fveq2i 5489 |
. . . 4
⊢
(1st ‘𝐵) = (1st ‘〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉) |
14 | | nqex 7304 |
. . . . . 6
⊢
Q ∈ V |
15 | 2 | brel 4656 |
. . . . . . . . . 10
⊢ (𝑥 <Q
𝑦 → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) |
16 | 15 | simpld 111 |
. . . . . . . . 9
⊢ (𝑥 <Q
𝑦 → 𝑥 ∈ Q) |
17 | 16 | adantr 274 |
. . . . . . . 8
⊢ ((𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) |
18 | 17 | exlimiv 1586 |
. . . . . . 7
⊢
(∃𝑦(𝑥 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑥 ∈ Q) |
19 | 18 | abssi 3217 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ⊆
Q |
20 | 14, 19 | ssexi 4120 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} ∈ V |
21 | 2 | brel 4656 |
. . . . . . . . . 10
⊢ (𝑦 <Q
𝑥 → (𝑦 ∈ Q ∧
𝑥 ∈
Q)) |
22 | 21 | simprd 113 |
. . . . . . . . 9
⊢ (𝑦 <Q
𝑥 → 𝑥 ∈ Q) |
23 | 22 | adantr 274 |
. . . . . . . 8
⊢ ((𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
24 | 23 | exlimiv 1586 |
. . . . . . 7
⊢
(∃𝑦(𝑦 <Q
𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) → 𝑥 ∈ Q) |
25 | 24 | abssi 3217 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ⊆
Q |
26 | 14, 25 | ssexi 4120 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))} ∈ V |
27 | 20, 26 | op1st 6114 |
. . . 4
⊢
(1st ‘〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} |
28 | 13, 27 | eqtri 2186 |
. . 3
⊢
(1st ‘𝐵) = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))} |
29 | 11, 28 | elab2g 2873 |
. 2
⊢ (𝐶 ∈ V → (𝐶 ∈ (1st
‘𝐵) ↔
∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
30 | 1, 8, 29 | pm5.21nii 694 |
1
⊢ (𝐶 ∈ (1st
‘𝐵) ↔
∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |