ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprxx GIF version

Theorem nqprxx 7729
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprxx (𝐴Q → ⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nqprxx
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprm 7725 . . 3 (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
2 ltrelnq 7548 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4770 . . . . . 6 (𝑥 <Q 𝐴 → (𝑥Q𝐴Q))
43simpld 112 . . . . 5 (𝑥 <Q 𝐴𝑥Q)
54abssi 3299 . . . 4 {𝑥𝑥 <Q 𝐴} ⊆ Q
62brel 4770 . . . . . 6 (𝐴 <Q 𝑥 → (𝐴Q𝑥Q))
76simprd 114 . . . . 5 (𝐴 <Q 𝑥𝑥Q)
87abssi 3299 . . . 4 {𝑥𝐴 <Q 𝑥} ⊆ Q
95, 8pm3.2i 272 . . 3 ({𝑥𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥𝐴 <Q 𝑥} ⊆ Q)
101, 9jctil 312 . 2 (𝐴Q → (({𝑥𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
11 nqprrnd 7726 . . 3 (𝐴Q → (∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))))
12 nqprdisj 7727 . . 3 (𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
13 nqprloc 7728 . . 3 (𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
1411, 12, 133jca 1201 . 2 (𝐴Q → ((∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))) ∧ ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))))
15 elinp 7657 . 2 (⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P ↔ ((({𝑥𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})) ∧ ((∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))) ∧ ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))))
1610, 14, 15sylanbrc 417 1 (𝐴Q → ⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002  wcel 2200  {cab 2215  wral 2508  wrex 2509  wss 3197  cop 3669   class class class wbr 4082  Qcnq 7463   <Q cltq 7468  Pcnp 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-inp 7649
This theorem is referenced by:  nqprlu  7730
  Copyright terms: Public domain W3C validator