Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqprxx | GIF version |
Description: The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprxx | ⊢ (𝐴 ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqprm 7504 | . . 3 ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) | |
2 | ltrelnq 7327 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4663 | . . . . . 6 ⊢ (𝑥 <Q 𝐴 → (𝑥 ∈ Q ∧ 𝐴 ∈ Q)) |
4 | 3 | simpld 111 | . . . . 5 ⊢ (𝑥 <Q 𝐴 → 𝑥 ∈ Q) |
5 | 4 | abssi 3222 | . . . 4 ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q |
6 | 2 | brel 4663 | . . . . . 6 ⊢ (𝐴 <Q 𝑥 → (𝐴 ∈ Q ∧ 𝑥 ∈ Q)) |
7 | 6 | simprd 113 | . . . . 5 ⊢ (𝐴 <Q 𝑥 → 𝑥 ∈ Q) |
8 | 7 | abssi 3222 | . . . 4 ⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q |
9 | 5, 8 | pm3.2i 270 | . . 3 ⊢ ({𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q) |
10 | 1, 9 | jctil 310 | . 2 ⊢ (𝐴 ∈ Q → (({𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
11 | nqprrnd 7505 | . . 3 ⊢ (𝐴 ∈ Q → (∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) | |
12 | nqprdisj 7506 | . . 3 ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) | |
13 | nqprloc 7507 | . . 3 ⊢ (𝐴 ∈ Q → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) | |
14 | 11, 12, 13 | 3jca 1172 | . 2 ⊢ (𝐴 ∈ Q → ((∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
15 | elinp 7436 | . 2 ⊢ (〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈ P ↔ ((({𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q ∧ {𝑥 ∣ 𝐴 <Q 𝑥} ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))))) | |
16 | 10, 14, 15 | sylanbrc 415 | 1 ⊢ (𝐴 ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈ P) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∧ w3a 973 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 〈cop 3586 class class class wbr 3989 Qcnq 7242 <Q cltq 7247 Pcnp 7253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-inp 7428 |
This theorem is referenced by: nqprlu 7509 |
Copyright terms: Public domain | W3C validator |