| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnqex | GIF version | ||
| Description: The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltnqex | ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqex 7558 | . 2 ⊢ Q ∈ V | |
| 2 | ltrelnq 7560 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 4771 | . . . 4 ⊢ (𝑥 <Q 𝐴 → (𝑥 ∈ Q ∧ 𝐴 ∈ Q)) |
| 4 | 3 | simpld 112 | . . 3 ⊢ (𝑥 <Q 𝐴 → 𝑥 ∈ Q) |
| 5 | 4 | abssi 3299 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q |
| 6 | 1, 5 | ssexi 4222 | 1 ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 {cab 2215 Vcvv 2799 class class class wbr 4083 Qcnq 7475 <Q cltq 7480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-qs 6694 df-ni 7499 df-nqqs 7543 df-ltnqqs 7548 |
| This theorem is referenced by: nqprl 7746 nqpru 7747 1prl 7750 1pru 7751 addnqprlemrl 7752 addnqprlemru 7753 addnqprlemfl 7754 addnqprlemfu 7755 mulnqprlemrl 7768 mulnqprlemru 7769 mulnqprlemfl 7770 mulnqprlemfu 7771 ltnqpr 7788 ltnqpri 7789 archpr 7838 cauappcvgprlemladdfu 7849 cauappcvgprlemladdfl 7850 cauappcvgprlem2 7855 caucvgprlemladdfu 7872 caucvgprlem2 7875 caucvgprprlemopu 7894 suplocexprlemloc 7916 |
| Copyright terms: Public domain | W3C validator |