Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltnqex | GIF version |
Description: The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.) |
Ref | Expression |
---|---|
ltnqex | ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex 7277 | . 2 ⊢ Q ∈ V | |
2 | ltrelnq 7279 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4637 | . . . 4 ⊢ (𝑥 <Q 𝐴 → (𝑥 ∈ Q ∧ 𝐴 ∈ Q)) |
4 | 3 | simpld 111 | . . 3 ⊢ (𝑥 <Q 𝐴 → 𝑥 ∈ Q) |
5 | 4 | abssi 3203 | . 2 ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ⊆ Q |
6 | 1, 5 | ssexi 4102 | 1 ⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 {cab 2143 Vcvv 2712 class class class wbr 3965 Qcnq 7194 <Q cltq 7199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-qs 6483 df-ni 7218 df-nqqs 7262 df-ltnqqs 7267 |
This theorem is referenced by: nqprl 7465 nqpru 7466 1prl 7469 1pru 7470 addnqprlemrl 7471 addnqprlemru 7472 addnqprlemfl 7473 addnqprlemfu 7474 mulnqprlemrl 7487 mulnqprlemru 7488 mulnqprlemfl 7489 mulnqprlemfu 7490 ltnqpr 7507 ltnqpri 7508 archpr 7557 cauappcvgprlemladdfu 7568 cauappcvgprlemladdfl 7569 cauappcvgprlem2 7574 caucvgprlemladdfu 7591 caucvgprlem2 7594 caucvgprprlemopu 7613 suplocexprlemloc 7635 |
Copyright terms: Public domain | W3C validator |