Proof of Theorem divalglemnqt
Step | Hyp | Ref
| Expression |
1 | | divalglemnqt.rd |
. . 3
⊢ (𝜑 → 𝑅 < 𝐷) |
2 | 1 | adantr 274 |
. 2
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 < 𝐷) |
3 | | divalglemnqt.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ℕ) |
4 | 3 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℕ) |
5 | 4 | nnred 8870 |
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℝ) |
6 | | divalglemnqt.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℤ) |
7 | 6 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 ∈ ℤ) |
8 | 7 | zred 9313 |
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 ∈ ℝ) |
9 | | divalglemnqt.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℤ) |
10 | 9 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℤ) |
11 | 10 | zred 9313 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℝ) |
12 | 5, 11 | readdcld 7928 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝐷 + 𝑆) ∈ ℝ) |
13 | | divalglemnqt.0s |
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝑆) |
14 | 13 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 0 ≤ 𝑆) |
15 | 5, 11 | addge01d 8431 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (0 ≤ 𝑆 ↔ 𝐷 ≤ (𝐷 + 𝑆))) |
16 | 14, 15 | mpbid 146 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ≤ (𝐷 + 𝑆)) |
17 | | divalglemnqt.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℤ) |
18 | 17 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℤ) |
19 | 18 | zred 9313 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℝ) |
20 | 19 | recnd 7927 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℂ) |
21 | 5 | recnd 7927 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℂ) |
22 | 20, 21 | mulcld 7919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℂ) |
23 | 11 | recnd 7927 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℂ) |
24 | 22, 21, 23 | addassd 7921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) = ((𝑄 · 𝐷) + (𝐷 + 𝑆))) |
25 | 19, 5 | remulcld 7929 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℝ) |
26 | 25, 5 | readdcld 7928 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ∈ ℝ) |
27 | | divalglemnqt.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℤ) |
28 | 27 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑇 ∈ ℤ) |
29 | 28 | zred 9313 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑇 ∈ ℝ) |
30 | 29, 5 | remulcld 7929 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑇 · 𝐷) ∈ ℝ) |
31 | 20, 21 | adddirp1d 7925 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) = ((𝑄 · 𝐷) + 𝐷)) |
32 | | peano2re 8034 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ ℝ → (𝑄 + 1) ∈
ℝ) |
33 | 19, 32 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 + 1) ∈ ℝ) |
34 | 4 | nnnn0d 9167 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈
ℕ0) |
35 | 34 | nn0ge0d 9170 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 0 ≤ 𝐷) |
36 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 < 𝑇) |
37 | | zltp1le 9245 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇)) |
38 | 17, 28, 37 | syl2an2r 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇)) |
39 | 36, 38 | mpbid 146 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 + 1) ≤ 𝑇) |
40 | 33, 29, 5, 35, 39 | lemul1ad 8834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) ≤ (𝑇 · 𝐷)) |
41 | 31, 40 | eqbrtrrd 4006 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ≤ (𝑇 · 𝐷)) |
42 | 26, 30, 11, 41 | leadd1dd 8457 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑇 · 𝐷) + 𝑆)) |
43 | | divalglemnqt.eq |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
44 | 43 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
45 | 42, 44 | breqtrrd 4010 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑄 · 𝐷) + 𝑅)) |
46 | 24, 45 | eqbrtrrd 4006 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅)) |
47 | 12, 8, 25 | leadd2d 8438 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝐷 + 𝑆) ≤ 𝑅 ↔ ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅))) |
48 | 46, 47 | mpbird 166 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝐷 + 𝑆) ≤ 𝑅) |
49 | 5, 12, 8, 16, 48 | letrd 8022 |
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ≤ 𝑅) |
50 | 5, 8, 49 | lensymd 8020 |
. 2
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ¬ 𝑅 < 𝐷) |
51 | 2, 50 | pm2.65da 651 |
1
⊢ (𝜑 → ¬ 𝑄 < 𝑇) |