ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnqt GIF version

Theorem divalglemnqt 12346
Description: Lemma for divalg 12350. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
Hypotheses
Ref Expression
divalglemnqt.d (𝜑𝐷 ∈ ℕ)
divalglemnqt.r (𝜑𝑅 ∈ ℤ)
divalglemnqt.s (𝜑𝑆 ∈ ℤ)
divalglemnqt.q (𝜑𝑄 ∈ ℤ)
divalglemnqt.t (𝜑𝑇 ∈ ℤ)
divalglemnqt.0s (𝜑 → 0 ≤ 𝑆)
divalglemnqt.rd (𝜑𝑅 < 𝐷)
divalglemnqt.eq (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))
Assertion
Ref Expression
divalglemnqt (𝜑 → ¬ 𝑄 < 𝑇)

Proof of Theorem divalglemnqt
StepHypRef Expression
1 divalglemnqt.rd . . 3 (𝜑𝑅 < 𝐷)
21adantr 276 . 2 ((𝜑𝑄 < 𝑇) → 𝑅 < 𝐷)
3 divalglemnqt.d . . . . 5 (𝜑𝐷 ∈ ℕ)
43adantr 276 . . . 4 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℕ)
54nnred 9084 . . 3 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℝ)
6 divalglemnqt.r . . . . 5 (𝜑𝑅 ∈ ℤ)
76adantr 276 . . . 4 ((𝜑𝑄 < 𝑇) → 𝑅 ∈ ℤ)
87zred 9530 . . 3 ((𝜑𝑄 < 𝑇) → 𝑅 ∈ ℝ)
9 divalglemnqt.s . . . . . . 7 (𝜑𝑆 ∈ ℤ)
109adantr 276 . . . . . 6 ((𝜑𝑄 < 𝑇) → 𝑆 ∈ ℤ)
1110zred 9530 . . . . 5 ((𝜑𝑄 < 𝑇) → 𝑆 ∈ ℝ)
125, 11readdcld 8137 . . . 4 ((𝜑𝑄 < 𝑇) → (𝐷 + 𝑆) ∈ ℝ)
13 divalglemnqt.0s . . . . . 6 (𝜑 → 0 ≤ 𝑆)
1413adantr 276 . . . . 5 ((𝜑𝑄 < 𝑇) → 0 ≤ 𝑆)
155, 11addge01d 8641 . . . . 5 ((𝜑𝑄 < 𝑇) → (0 ≤ 𝑆𝐷 ≤ (𝐷 + 𝑆)))
1614, 15mpbid 147 . . . 4 ((𝜑𝑄 < 𝑇) → 𝐷 ≤ (𝐷 + 𝑆))
17 divalglemnqt.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℤ)
1817adantr 276 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → 𝑄 ∈ ℤ)
1918zred 9530 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → 𝑄 ∈ ℝ)
2019recnd 8136 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → 𝑄 ∈ ℂ)
215recnd 8136 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℂ)
2220, 21mulcld 8128 . . . . . . 7 ((𝜑𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℂ)
2311recnd 8136 . . . . . . 7 ((𝜑𝑄 < 𝑇) → 𝑆 ∈ ℂ)
2422, 21, 23addassd 8130 . . . . . 6 ((𝜑𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) = ((𝑄 · 𝐷) + (𝐷 + 𝑆)))
2519, 5remulcld 8138 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℝ)
2625, 5readdcld 8137 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ∈ ℝ)
27 divalglemnqt.t . . . . . . . . . . 11 (𝜑𝑇 ∈ ℤ)
2827adantr 276 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → 𝑇 ∈ ℤ)
2928zred 9530 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → 𝑇 ∈ ℝ)
3029, 5remulcld 8138 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → (𝑇 · 𝐷) ∈ ℝ)
3120, 21adddirp1d 8134 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) = ((𝑄 · 𝐷) + 𝐷))
32 peano2re 8243 . . . . . . . . . . 11 (𝑄 ∈ ℝ → (𝑄 + 1) ∈ ℝ)
3319, 32syl 14 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → (𝑄 + 1) ∈ ℝ)
344nnnn0d 9383 . . . . . . . . . . 11 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℕ0)
3534nn0ge0d 9386 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → 0 ≤ 𝐷)
36 simpr 110 . . . . . . . . . . 11 ((𝜑𝑄 < 𝑇) → 𝑄 < 𝑇)
37 zltp1le 9462 . . . . . . . . . . . 12 ((𝑄 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇))
3817, 28, 37syl2an2r 595 . . . . . . . . . . 11 ((𝜑𝑄 < 𝑇) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇))
3936, 38mpbid 147 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → (𝑄 + 1) ≤ 𝑇)
4033, 29, 5, 35, 39lemul1ad 9047 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) ≤ (𝑇 · 𝐷))
4131, 40eqbrtrrd 4083 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ≤ (𝑇 · 𝐷))
4226, 30, 11, 41leadd1dd 8667 . . . . . . 7 ((𝜑𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑇 · 𝐷) + 𝑆))
43 divalglemnqt.eq . . . . . . . 8 (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))
4443adantr 276 . . . . . . 7 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))
4542, 44breqtrrd 4087 . . . . . 6 ((𝜑𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑄 · 𝐷) + 𝑅))
4624, 45eqbrtrrd 4083 . . . . 5 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅))
4712, 8, 25leadd2d 8648 . . . . 5 ((𝜑𝑄 < 𝑇) → ((𝐷 + 𝑆) ≤ 𝑅 ↔ ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅)))
4846, 47mpbird 167 . . . 4 ((𝜑𝑄 < 𝑇) → (𝐷 + 𝑆) ≤ 𝑅)
495, 12, 8, 16, 48letrd 8231 . . 3 ((𝜑𝑄 < 𝑇) → 𝐷𝑅)
505, 8, 49lensymd 8229 . 2 ((𝜑𝑄 < 𝑇) → ¬ 𝑅 < 𝐷)
512, 50pm2.65da 663 1 (𝜑 → ¬ 𝑄 < 𝑇)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178   class class class wbr 4059  (class class class)co 5967  cr 7959  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965   < clt 8142  cle 8143  cn 9071  cz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  divalglemeunn  12347  divalglemeuneg  12349
  Copyright terms: Public domain W3C validator