Proof of Theorem divalglemnqt
| Step | Hyp | Ref
 | Expression | 
| 1 |   | divalglemnqt.rd | 
. . 3
⊢ (𝜑 → 𝑅 < 𝐷) | 
| 2 | 1 | adantr 276 | 
. 2
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 < 𝐷) | 
| 3 |   | divalglemnqt.d | 
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ℕ) | 
| 4 | 3 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℕ) | 
| 5 | 4 | nnred 9003 | 
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℝ) | 
| 6 |   | divalglemnqt.r | 
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℤ) | 
| 7 | 6 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 ∈ ℤ) | 
| 8 | 7 | zred 9448 | 
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 ∈ ℝ) | 
| 9 |   | divalglemnqt.s | 
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℤ) | 
| 10 | 9 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℤ) | 
| 11 | 10 | zred 9448 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℝ) | 
| 12 | 5, 11 | readdcld 8056 | 
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝐷 + 𝑆) ∈ ℝ) | 
| 13 |   | divalglemnqt.0s | 
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝑆) | 
| 14 | 13 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 0 ≤ 𝑆) | 
| 15 | 5, 11 | addge01d 8560 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (0 ≤ 𝑆 ↔ 𝐷 ≤ (𝐷 + 𝑆))) | 
| 16 | 14, 15 | mpbid 147 | 
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ≤ (𝐷 + 𝑆)) | 
| 17 |   | divalglemnqt.q | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℤ) | 
| 18 | 17 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℤ) | 
| 19 | 18 | zred 9448 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℝ) | 
| 20 | 19 | recnd 8055 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℂ) | 
| 21 | 5 | recnd 8055 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℂ) | 
| 22 | 20, 21 | mulcld 8047 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℂ) | 
| 23 | 11 | recnd 8055 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℂ) | 
| 24 | 22, 21, 23 | addassd 8049 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) = ((𝑄 · 𝐷) + (𝐷 + 𝑆))) | 
| 25 | 19, 5 | remulcld 8057 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℝ) | 
| 26 | 25, 5 | readdcld 8056 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ∈ ℝ) | 
| 27 |   | divalglemnqt.t | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℤ) | 
| 28 | 27 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑇 ∈ ℤ) | 
| 29 | 28 | zred 9448 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑇 ∈ ℝ) | 
| 30 | 29, 5 | remulcld 8057 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑇 · 𝐷) ∈ ℝ) | 
| 31 | 20, 21 | adddirp1d 8053 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) = ((𝑄 · 𝐷) + 𝐷)) | 
| 32 |   | peano2re 8162 | 
. . . . . . . . . . 11
⊢ (𝑄 ∈ ℝ → (𝑄 + 1) ∈
ℝ) | 
| 33 | 19, 32 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 + 1) ∈ ℝ) | 
| 34 | 4 | nnnn0d 9302 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈
ℕ0) | 
| 35 | 34 | nn0ge0d 9305 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 0 ≤ 𝐷) | 
| 36 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 < 𝑇) | 
| 37 |   | zltp1le 9380 | 
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇)) | 
| 38 | 17, 28, 37 | syl2an2r 595 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇)) | 
| 39 | 36, 38 | mpbid 147 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 + 1) ≤ 𝑇) | 
| 40 | 33, 29, 5, 35, 39 | lemul1ad 8966 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) ≤ (𝑇 · 𝐷)) | 
| 41 | 31, 40 | eqbrtrrd 4057 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ≤ (𝑇 · 𝐷)) | 
| 42 | 26, 30, 11, 41 | leadd1dd 8586 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑇 · 𝐷) + 𝑆)) | 
| 43 |   | divalglemnqt.eq | 
. . . . . . . 8
⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) | 
| 44 | 43 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) | 
| 45 | 42, 44 | breqtrrd 4061 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑄 · 𝐷) + 𝑅)) | 
| 46 | 24, 45 | eqbrtrrd 4057 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅)) | 
| 47 | 12, 8, 25 | leadd2d 8567 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝐷 + 𝑆) ≤ 𝑅 ↔ ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅))) | 
| 48 | 46, 47 | mpbird 167 | 
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝐷 + 𝑆) ≤ 𝑅) | 
| 49 | 5, 12, 8, 16, 48 | letrd 8150 | 
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ≤ 𝑅) | 
| 50 | 5, 8, 49 | lensymd 8148 | 
. 2
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ¬ 𝑅 < 𝐷) | 
| 51 | 2, 50 | pm2.65da 662 | 
1
⊢ (𝜑 → ¬ 𝑄 < 𝑇) |