ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnqt GIF version

Theorem divalglemnqt 11857
Description: Lemma for divalg 11861. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
Hypotheses
Ref Expression
divalglemnqt.d (𝜑𝐷 ∈ ℕ)
divalglemnqt.r (𝜑𝑅 ∈ ℤ)
divalglemnqt.s (𝜑𝑆 ∈ ℤ)
divalglemnqt.q (𝜑𝑄 ∈ ℤ)
divalglemnqt.t (𝜑𝑇 ∈ ℤ)
divalglemnqt.0s (𝜑 → 0 ≤ 𝑆)
divalglemnqt.rd (𝜑𝑅 < 𝐷)
divalglemnqt.eq (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))
Assertion
Ref Expression
divalglemnqt (𝜑 → ¬ 𝑄 < 𝑇)

Proof of Theorem divalglemnqt
StepHypRef Expression
1 divalglemnqt.rd . . 3 (𝜑𝑅 < 𝐷)
21adantr 274 . 2 ((𝜑𝑄 < 𝑇) → 𝑅 < 𝐷)
3 divalglemnqt.d . . . . 5 (𝜑𝐷 ∈ ℕ)
43adantr 274 . . . 4 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℕ)
54nnred 8870 . . 3 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℝ)
6 divalglemnqt.r . . . . 5 (𝜑𝑅 ∈ ℤ)
76adantr 274 . . . 4 ((𝜑𝑄 < 𝑇) → 𝑅 ∈ ℤ)
87zred 9313 . . 3 ((𝜑𝑄 < 𝑇) → 𝑅 ∈ ℝ)
9 divalglemnqt.s . . . . . . 7 (𝜑𝑆 ∈ ℤ)
109adantr 274 . . . . . 6 ((𝜑𝑄 < 𝑇) → 𝑆 ∈ ℤ)
1110zred 9313 . . . . 5 ((𝜑𝑄 < 𝑇) → 𝑆 ∈ ℝ)
125, 11readdcld 7928 . . . 4 ((𝜑𝑄 < 𝑇) → (𝐷 + 𝑆) ∈ ℝ)
13 divalglemnqt.0s . . . . . 6 (𝜑 → 0 ≤ 𝑆)
1413adantr 274 . . . . 5 ((𝜑𝑄 < 𝑇) → 0 ≤ 𝑆)
155, 11addge01d 8431 . . . . 5 ((𝜑𝑄 < 𝑇) → (0 ≤ 𝑆𝐷 ≤ (𝐷 + 𝑆)))
1614, 15mpbid 146 . . . 4 ((𝜑𝑄 < 𝑇) → 𝐷 ≤ (𝐷 + 𝑆))
17 divalglemnqt.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℤ)
1817adantr 274 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → 𝑄 ∈ ℤ)
1918zred 9313 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → 𝑄 ∈ ℝ)
2019recnd 7927 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → 𝑄 ∈ ℂ)
215recnd 7927 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℂ)
2220, 21mulcld 7919 . . . . . . 7 ((𝜑𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℂ)
2311recnd 7927 . . . . . . 7 ((𝜑𝑄 < 𝑇) → 𝑆 ∈ ℂ)
2422, 21, 23addassd 7921 . . . . . 6 ((𝜑𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) = ((𝑄 · 𝐷) + (𝐷 + 𝑆)))
2519, 5remulcld 7929 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℝ)
2625, 5readdcld 7928 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ∈ ℝ)
27 divalglemnqt.t . . . . . . . . . . 11 (𝜑𝑇 ∈ ℤ)
2827adantr 274 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → 𝑇 ∈ ℤ)
2928zred 9313 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → 𝑇 ∈ ℝ)
3029, 5remulcld 7929 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → (𝑇 · 𝐷) ∈ ℝ)
3120, 21adddirp1d 7925 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) = ((𝑄 · 𝐷) + 𝐷))
32 peano2re 8034 . . . . . . . . . . 11 (𝑄 ∈ ℝ → (𝑄 + 1) ∈ ℝ)
3319, 32syl 14 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → (𝑄 + 1) ∈ ℝ)
344nnnn0d 9167 . . . . . . . . . . 11 ((𝜑𝑄 < 𝑇) → 𝐷 ∈ ℕ0)
3534nn0ge0d 9170 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → 0 ≤ 𝐷)
36 simpr 109 . . . . . . . . . . 11 ((𝜑𝑄 < 𝑇) → 𝑄 < 𝑇)
37 zltp1le 9245 . . . . . . . . . . . 12 ((𝑄 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇))
3817, 28, 37syl2an2r 585 . . . . . . . . . . 11 ((𝜑𝑄 < 𝑇) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇))
3936, 38mpbid 146 . . . . . . . . . 10 ((𝜑𝑄 < 𝑇) → (𝑄 + 1) ≤ 𝑇)
4033, 29, 5, 35, 39lemul1ad 8834 . . . . . . . . 9 ((𝜑𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) ≤ (𝑇 · 𝐷))
4131, 40eqbrtrrd 4006 . . . . . . . 8 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ≤ (𝑇 · 𝐷))
4226, 30, 11, 41leadd1dd 8457 . . . . . . 7 ((𝜑𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑇 · 𝐷) + 𝑆))
43 divalglemnqt.eq . . . . . . . 8 (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))
4443adantr 274 . . . . . . 7 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))
4542, 44breqtrrd 4010 . . . . . 6 ((𝜑𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑄 · 𝐷) + 𝑅))
4624, 45eqbrtrrd 4006 . . . . 5 ((𝜑𝑄 < 𝑇) → ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅))
4712, 8, 25leadd2d 8438 . . . . 5 ((𝜑𝑄 < 𝑇) → ((𝐷 + 𝑆) ≤ 𝑅 ↔ ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅)))
4846, 47mpbird 166 . . . 4 ((𝜑𝑄 < 𝑇) → (𝐷 + 𝑆) ≤ 𝑅)
495, 12, 8, 16, 48letrd 8022 . . 3 ((𝜑𝑄 < 𝑇) → 𝐷𝑅)
505, 8, 49lensymd 8020 . 2 ((𝜑𝑄 < 𝑇) → ¬ 𝑅 < 𝐷)
512, 50pm2.65da 651 1 (𝜑 → ¬ 𝑄 < 𝑇)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cn 8857  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  divalglemeunn  11858  divalglemeuneg  11860
  Copyright terms: Public domain W3C validator