Proof of Theorem divalglemnqt
| Step | Hyp | Ref
| Expression |
| 1 | | divalglemnqt.rd |
. . 3
⊢ (𝜑 → 𝑅 < 𝐷) |
| 2 | 1 | adantr 276 |
. 2
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 < 𝐷) |
| 3 | | divalglemnqt.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ℕ) |
| 4 | 3 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℕ) |
| 5 | 4 | nnred 9020 |
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℝ) |
| 6 | | divalglemnqt.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℤ) |
| 7 | 6 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 ∈ ℤ) |
| 8 | 7 | zred 9465 |
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑅 ∈ ℝ) |
| 9 | | divalglemnqt.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℤ) |
| 10 | 9 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℤ) |
| 11 | 10 | zred 9465 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℝ) |
| 12 | 5, 11 | readdcld 8073 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝐷 + 𝑆) ∈ ℝ) |
| 13 | | divalglemnqt.0s |
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝑆) |
| 14 | 13 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 0 ≤ 𝑆) |
| 15 | 5, 11 | addge01d 8577 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (0 ≤ 𝑆 ↔ 𝐷 ≤ (𝐷 + 𝑆))) |
| 16 | 14, 15 | mpbid 147 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ≤ (𝐷 + 𝑆)) |
| 17 | | divalglemnqt.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 18 | 17 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℤ) |
| 19 | 18 | zred 9465 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℝ) |
| 20 | 19 | recnd 8072 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 ∈ ℂ) |
| 21 | 5 | recnd 8072 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈ ℂ) |
| 22 | 20, 21 | mulcld 8064 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℂ) |
| 23 | 11 | recnd 8072 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑆 ∈ ℂ) |
| 24 | 22, 21, 23 | addassd 8066 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) = ((𝑄 · 𝐷) + (𝐷 + 𝑆))) |
| 25 | 19, 5 | remulcld 8074 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 · 𝐷) ∈ ℝ) |
| 26 | 25, 5 | readdcld 8073 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ∈ ℝ) |
| 27 | | divalglemnqt.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℤ) |
| 28 | 27 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑇 ∈ ℤ) |
| 29 | 28 | zred 9465 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑇 ∈ ℝ) |
| 30 | 29, 5 | remulcld 8074 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑇 · 𝐷) ∈ ℝ) |
| 31 | 20, 21 | adddirp1d 8070 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) = ((𝑄 · 𝐷) + 𝐷)) |
| 32 | | peano2re 8179 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ ℝ → (𝑄 + 1) ∈
ℝ) |
| 33 | 19, 32 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 + 1) ∈ ℝ) |
| 34 | 4 | nnnn0d 9319 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ∈
ℕ0) |
| 35 | 34 | nn0ge0d 9322 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 0 ≤ 𝐷) |
| 36 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝑄 < 𝑇) |
| 37 | | zltp1le 9397 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ ℤ ∧ 𝑇 ∈ ℤ) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇)) |
| 38 | 17, 28, 37 | syl2an2r 595 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 < 𝑇 ↔ (𝑄 + 1) ≤ 𝑇)) |
| 39 | 36, 38 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝑄 + 1) ≤ 𝑇) |
| 40 | 33, 29, 5, 35, 39 | lemul1ad 8983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 + 1) · 𝐷) ≤ (𝑇 · 𝐷)) |
| 41 | 31, 40 | eqbrtrrd 4058 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝐷) ≤ (𝑇 · 𝐷)) |
| 42 | 26, 30, 11, 41 | leadd1dd 8603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑇 · 𝐷) + 𝑆)) |
| 43 | | divalglemnqt.eq |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
| 44 | 43 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
| 45 | 42, 44 | breqtrrd 4062 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (((𝑄 · 𝐷) + 𝐷) + 𝑆) ≤ ((𝑄 · 𝐷) + 𝑅)) |
| 46 | 24, 45 | eqbrtrrd 4058 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅)) |
| 47 | 12, 8, 25 | leadd2d 8584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ((𝐷 + 𝑆) ≤ 𝑅 ↔ ((𝑄 · 𝐷) + (𝐷 + 𝑆)) ≤ ((𝑄 · 𝐷) + 𝑅))) |
| 48 | 46, 47 | mpbird 167 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → (𝐷 + 𝑆) ≤ 𝑅) |
| 49 | 5, 12, 8, 16, 48 | letrd 8167 |
. . 3
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → 𝐷 ≤ 𝑅) |
| 50 | 5, 8, 49 | lensymd 8165 |
. 2
⊢ ((𝜑 ∧ 𝑄 < 𝑇) → ¬ 𝑅 < 𝐷) |
| 51 | 2, 50 | pm2.65da 662 |
1
⊢ (𝜑 → ¬ 𝑄 < 𝑇) |