![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid2d | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulid2d | ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mullid 8019 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 1c1 7875 · cmul 7879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-mulcom 7975 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: adddirp1d 8048 mulsubfacd 8439 mulcanapd 8682 receuap 8690 divdivdivap 8734 divcanap5 8735 subrecap 8860 ltrec 8904 recp1lt1 8920 nndivtr 9026 xp1d2m1eqxm1d2 9238 gtndiv 9415 lincmb01cmp 10072 iccf1o 10073 modqfrac 10411 qnegmod 10443 addmodid 10446 m1expcl2 10635 expgt1 10651 ltexp2a 10665 leexp2a 10666 binom3 10731 faclbnd 10815 facavg 10820 bcval5 10837 cvg1nlemcau 11131 resqrexlemover 11157 resqrexlemcalc2 11162 absimle 11231 maxabslemlub 11354 reccn2ap 11459 binom1p 11631 binom1dif 11633 fprodsplitdc 11742 fprodcl2lem 11751 efcllemp 11804 ef01bndlem 11902 efieq1re 11918 eirraplem 11923 iddvds 11950 gcdaddm 12124 rpmulgcd 12166 prmind2 12261 isprm5lem 12282 phiprm 12364 eulerthlemth 12373 fermltl 12375 hashgcdlem 12379 odzdvds 12386 powm2modprm 12393 modprm0 12395 pythagtriplem4 12409 mulgnnass 13230 dvexp 14890 dvef 14906 reeff1oleme 14948 sin0pilem1 14957 sinhalfpip 14996 sinhalfpim 14997 coshalfpip 14998 coshalfpim 14999 tangtx 15014 logdivlti 15057 binom4 15152 lgsval2lem 15167 lgsval4a 15179 lgsneg1 15182 lgsdilem 15184 lgsdir2lem4 15188 lgsdir2 15190 lgsdir 15192 lgsmulsqcoprm 15203 lgsdirnn0 15204 lgsdinn0 15205 2sqlem8 15280 qdencn 15587 |
Copyright terms: Public domain | W3C validator |