| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulid2d | ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mullid 8100 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5962 ℂcc 7953 1c1 7956 · cmul 7960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-mulcl 8053 ax-mulcom 8056 ax-mulass 8058 ax-distr 8059 ax-1rid 8062 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 |
| This theorem is referenced by: adddirp1d 8129 mulsubfacd 8521 mulcanapd 8764 receuap 8772 divdivdivap 8816 divcanap5 8817 subrecap 8942 ltrec 8986 recp1lt1 9002 nndivtr 9108 xp1d2m1eqxm1d2 9320 gtndiv 9498 lincmb01cmp 10155 iccf1o 10156 modqfrac 10514 qnegmod 10546 addmodid 10549 m1expcl2 10738 expgt1 10754 ltexp2a 10768 leexp2a 10769 binom3 10834 faclbnd 10918 facavg 10923 bcval5 10940 cvg1nlemcau 11380 resqrexlemover 11406 resqrexlemcalc2 11411 absimle 11480 maxabslemlub 11603 reccn2ap 11709 binom1p 11881 binom1dif 11883 fprodsplitdc 11992 fprodcl2lem 12001 efcllemp 12054 ef01bndlem 12152 efieq1re 12168 eirraplem 12173 iddvds 12200 gcdaddm 12390 rpmulgcd 12432 prmind2 12527 isprm5lem 12548 phiprm 12630 eulerthlemth 12639 fermltl 12641 hashgcdlem 12645 odzdvds 12653 powm2modprm 12660 modprm0 12662 pythagtriplem4 12676 mulgnnass 13578 dvexp 15268 dvef 15284 reeff1oleme 15329 sin0pilem1 15338 sinhalfpip 15377 sinhalfpim 15378 coshalfpip 15379 coshalfpim 15380 tangtx 15395 logdivlti 15438 binom4 15536 lgsval2lem 15572 lgsval4a 15584 lgsneg1 15587 lgsdilem 15589 lgsdir2lem4 15593 lgsdir2 15595 lgsdir 15597 lgsmulsqcoprm 15608 lgsdirnn0 15609 lgsdinn0 15610 2sqlem8 15685 qdencn 16138 |
| Copyright terms: Public domain | W3C validator |