![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid2d | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulid2d | ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mullid 8017 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 1c1 7873 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-mulcom 7973 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: adddirp1d 8046 mulsubfacd 8437 mulcanapd 8680 receuap 8688 divdivdivap 8732 divcanap5 8733 subrecap 8858 ltrec 8902 recp1lt1 8918 nndivtr 9024 xp1d2m1eqxm1d2 9235 gtndiv 9412 lincmb01cmp 10069 iccf1o 10070 modqfrac 10408 qnegmod 10440 addmodid 10443 m1expcl2 10632 expgt1 10648 ltexp2a 10662 leexp2a 10663 binom3 10728 faclbnd 10812 facavg 10817 bcval5 10834 cvg1nlemcau 11128 resqrexlemover 11154 resqrexlemcalc2 11159 absimle 11228 maxabslemlub 11351 reccn2ap 11456 binom1p 11628 binom1dif 11630 fprodsplitdc 11739 fprodcl2lem 11748 efcllemp 11801 ef01bndlem 11899 efieq1re 11915 eirraplem 11920 iddvds 11947 gcdaddm 12121 rpmulgcd 12163 prmind2 12258 isprm5lem 12279 phiprm 12361 eulerthlemth 12370 fermltl 12372 hashgcdlem 12376 odzdvds 12383 powm2modprm 12390 modprm0 12392 pythagtriplem4 12406 mulgnnass 13227 dvexp 14860 dvef 14873 reeff1oleme 14907 sin0pilem1 14916 sinhalfpip 14955 sinhalfpim 14956 coshalfpip 14957 coshalfpim 14958 tangtx 14973 logdivlti 15016 binom4 15111 lgsval2lem 15126 lgsval4a 15138 lgsneg1 15141 lgsdilem 15143 lgsdir2lem4 15147 lgsdir2 15149 lgsdir 15151 lgsmulsqcoprm 15162 lgsdirnn0 15163 lgsdinn0 15164 2sqlem8 15210 qdencn 15517 |
Copyright terms: Public domain | W3C validator |