Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulid2d | GIF version |
Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mulid2d | ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mulid2 7893 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 1c1 7750 · cmul 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-mulcom 7850 ax-mulass 7852 ax-distr 7853 ax-1rid 7856 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: adddirp1d 7921 mulsubfacd 8312 mulcanapd 8554 receuap 8562 divdivdivap 8605 divcanap5 8606 subrecap 8731 ltrec 8774 recp1lt1 8790 nndivtr 8895 xp1d2m1eqxm1d2 9105 gtndiv 9282 lincmb01cmp 9935 iccf1o 9936 modqfrac 10268 qnegmod 10300 addmodid 10303 m1expcl2 10473 expgt1 10489 ltexp2a 10503 leexp2a 10504 binom3 10568 faclbnd 10650 facavg 10655 bcval5 10672 cvg1nlemcau 10922 resqrexlemover 10948 resqrexlemcalc2 10953 absimle 11022 maxabslemlub 11145 reccn2ap 11250 binom1p 11422 binom1dif 11424 fprodsplitdc 11533 fprodcl2lem 11542 efcllemp 11595 ef01bndlem 11693 efieq1re 11708 eirraplem 11713 iddvds 11740 gcdaddm 11913 rpmulgcd 11955 prmind2 12048 isprm5lem 12069 phiprm 12151 eulerthlemth 12160 fermltl 12162 hashgcdlem 12166 odzdvds 12173 powm2modprm 12180 modprm0 12182 pythagtriplem4 12196 dvexp 13275 dvef 13288 reeff1oleme 13293 sin0pilem1 13302 sinhalfpip 13341 sinhalfpim 13342 coshalfpip 13343 coshalfpim 13344 tangtx 13359 logdivlti 13402 binom4 13497 lgsval2lem 13511 lgsval4a 13523 lgsneg1 13526 lgsdilem 13528 lgsdir2lem4 13532 lgsdir2 13534 lgsdir 13536 lgsmulsqcoprm 13547 lgsdirnn0 13548 lgsdinn0 13549 2sqlem8 13559 qdencn 13866 |
Copyright terms: Public domain | W3C validator |