| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulid2d | ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mullid 8027 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5923 ℂcc 7880 1c1 7883 · cmul 7887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7974 ax-1cn 7975 ax-icn 7977 ax-addcl 7978 ax-mulcl 7980 ax-mulcom 7983 ax-mulass 7985 ax-distr 7986 ax-1rid 7989 ax-cnre 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: adddirp1d 8056 mulsubfacd 8448 mulcanapd 8691 receuap 8699 divdivdivap 8743 divcanap5 8744 subrecap 8869 ltrec 8913 recp1lt1 8929 nndivtr 9035 xp1d2m1eqxm1d2 9247 gtndiv 9424 lincmb01cmp 10081 iccf1o 10082 modqfrac 10432 qnegmod 10464 addmodid 10467 m1expcl2 10656 expgt1 10672 ltexp2a 10686 leexp2a 10687 binom3 10752 faclbnd 10836 facavg 10841 bcval5 10858 cvg1nlemcau 11152 resqrexlemover 11178 resqrexlemcalc2 11183 absimle 11252 maxabslemlub 11375 reccn2ap 11481 binom1p 11653 binom1dif 11655 fprodsplitdc 11764 fprodcl2lem 11773 efcllemp 11826 ef01bndlem 11924 efieq1re 11940 eirraplem 11945 iddvds 11972 gcdaddm 12162 rpmulgcd 12204 prmind2 12299 isprm5lem 12320 phiprm 12402 eulerthlemth 12411 fermltl 12413 hashgcdlem 12417 odzdvds 12425 powm2modprm 12432 modprm0 12434 pythagtriplem4 12448 mulgnnass 13313 dvexp 14973 dvef 14989 reeff1oleme 15034 sin0pilem1 15043 sinhalfpip 15082 sinhalfpim 15083 coshalfpip 15084 coshalfpim 15085 tangtx 15100 logdivlti 15143 binom4 15241 lgsval2lem 15277 lgsval4a 15289 lgsneg1 15292 lgsdilem 15294 lgsdir2lem4 15298 lgsdir2 15300 lgsdir 15302 lgsmulsqcoprm 15313 lgsdirnn0 15314 lgsdinn0 15315 2sqlem8 15390 qdencn 15698 |
| Copyright terms: Public domain | W3C validator |