| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulid2d | GIF version | ||
| Description: Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulid2d | ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mullid 8140 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 1c1 7996 · cmul 8000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: adddirp1d 8169 mulsubfacd 8561 mulcanapd 8804 receuap 8812 divdivdivap 8856 divcanap5 8857 subrecap 8982 ltrec 9026 recp1lt1 9042 nndivtr 9148 xp1d2m1eqxm1d2 9360 gtndiv 9538 lincmb01cmp 10195 iccf1o 10196 modqfrac 10554 qnegmod 10586 addmodid 10589 m1expcl2 10778 expgt1 10794 ltexp2a 10808 leexp2a 10809 binom3 10874 faclbnd 10958 facavg 10963 bcval5 10980 cvg1nlemcau 11490 resqrexlemover 11516 resqrexlemcalc2 11521 absimle 11590 maxabslemlub 11713 reccn2ap 11819 binom1p 11991 binom1dif 11993 fprodsplitdc 12102 fprodcl2lem 12111 efcllemp 12164 ef01bndlem 12262 efieq1re 12278 eirraplem 12283 iddvds 12310 gcdaddm 12500 rpmulgcd 12542 prmind2 12637 isprm5lem 12658 phiprm 12740 eulerthlemth 12749 fermltl 12751 hashgcdlem 12755 odzdvds 12763 powm2modprm 12770 modprm0 12772 pythagtriplem4 12786 mulgnnass 13689 dvexp 15379 dvef 15395 reeff1oleme 15440 sin0pilem1 15449 sinhalfpip 15488 sinhalfpim 15489 coshalfpip 15490 coshalfpim 15491 tangtx 15506 logdivlti 15549 binom4 15647 lgsval2lem 15683 lgsval4a 15695 lgsneg1 15698 lgsdilem 15700 lgsdir2lem4 15704 lgsdir2 15706 lgsdir 15708 lgsmulsqcoprm 15719 lgsdirnn0 15720 lgsdinn0 15721 2sqlem8 15796 qdencn 16354 |
| Copyright terms: Public domain | W3C validator |