ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldmulg GIF version

Theorem cnfldmulg 14338
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))

Proof of Theorem cnfldmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5951 . . . 4 (𝑥 = 0 → (𝑥(.g‘ℂfld)𝐵) = (0(.g‘ℂfld)𝐵))
2 oveq1 5951 . . . 4 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2220 . . 3 (𝑥 = 0 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (0(.g‘ℂfld)𝐵) = (0 · 𝐵)))
4 oveq1 5951 . . . 4 (𝑥 = 𝑦 → (𝑥(.g‘ℂfld)𝐵) = (𝑦(.g‘ℂfld)𝐵))
5 oveq1 5951 . . . 4 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2220 . . 3 (𝑥 = 𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵)))
7 oveq1 5951 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥(.g‘ℂfld)𝐵) = ((𝑦 + 1)(.g‘ℂfld)𝐵))
8 oveq1 5951 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2220 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 5951 . . . 4 (𝑥 = -𝑦 → (𝑥(.g‘ℂfld)𝐵) = (-𝑦(.g‘ℂfld)𝐵))
11 oveq1 5951 . . . 4 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2220 . . 3 (𝑥 = -𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
13 oveq1 5951 . . . 4 (𝑥 = 𝐴 → (𝑥(.g‘ℂfld)𝐵) = (𝐴(.g‘ℂfld)𝐵))
14 oveq1 5951 . . . 4 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2220 . . 3 (𝑥 = 𝐴 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
16 cnfldbas 14322 . . . . 5 ℂ = (Base‘ℂfld)
17 cnfld0 14333 . . . . 5 0 = (0g‘ℂfld)
18 eqid 2205 . . . . 5 (.g‘ℂfld) = (.g‘ℂfld)
1916, 17, 18mulg0 13461 . . . 4 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = 0)
20 mul02 8459 . . . 4 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2119, 20eqtr4d 2241 . . 3 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = (0 · 𝐵))
22 oveq1 5951 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵))
23 cnring 14332 . . . . . . . 8 fld ∈ Ring
24 ringmnd 13768 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2523, 24ax-mp 5 . . . . . . 7 fld ∈ Mnd
26 cnfldadd 14324 . . . . . . . 8 + = (+g‘ℂfld)
2716, 18, 26mulgnn0p1 13469 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
2825, 27mp3an1 1337 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
29 nn0cn 9305 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
3029adantr 276 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝑦 ∈ ℂ)
31 simpr 110 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3230, 31adddirp1d 8099 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + 𝐵))
3328, 32eqeq12d 2220 . . . . 5 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → (((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵)))
3422, 33imbitrrid 156 . . . 4 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
3534expcom 116 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ0 → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))))
36 fveq2 5576 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
37 eqid 2205 . . . . . . 7 (invg‘ℂfld) = (invg‘ℂfld)
3816, 18, 37mulgnegnn 13468 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦(.g‘ℂfld)𝐵) = ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)))
39 nncn 9044 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
40 mulneg1 8467 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
4139, 40sylan 283 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
42 mulcl 8052 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4339, 42sylan 283 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
44 cnfldneg 14335 . . . . . . . 8 ((𝑦 · 𝐵) ∈ ℂ → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4543, 44syl 14 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4641, 45eqtr4d 2241 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
4738, 46eqeq12d 2220 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵) ↔ ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵))))
4836, 47imbitrrid 156 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
4948expcom 116 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))))
503, 6, 9, 12, 15, 21, 35, 49zindd 9491 . 2 (𝐵 ∈ ℂ → (𝐴 ∈ ℤ → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
5150impcom 125 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  cfv 5271  (class class class)co 5944  cc 7923  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930  -cneg 8244  cn 9036  0cn0 9295  cz 9372  Mndcmnd 13248  invgcminusg 13333  .gcmg 13455  Ringcrg 13758  fldccnfld 14318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-rp 9776  df-fz 10131  df-seqfrec 10593  df-cj 11153  df-abs 11310  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-starv 12924  df-tset 12928  df-ple 12929  df-ds 12931  df-unif 12932  df-0g 13090  df-topgen 13092  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mulg 13456  df-cmn 13622  df-mgp 13683  df-ring 13760  df-cring 13761  df-bl 14308  df-mopn 14309  df-fg 14311  df-metu 14312  df-cnfld 14319
This theorem is referenced by:  zsssubrg  14347  zringmulg  14360  mulgrhm2  14372
  Copyright terms: Public domain W3C validator