ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldmulg GIF version

Theorem cnfldmulg 14453
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))

Proof of Theorem cnfldmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5974 . . . 4 (𝑥 = 0 → (𝑥(.g‘ℂfld)𝐵) = (0(.g‘ℂfld)𝐵))
2 oveq1 5974 . . . 4 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2222 . . 3 (𝑥 = 0 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (0(.g‘ℂfld)𝐵) = (0 · 𝐵)))
4 oveq1 5974 . . . 4 (𝑥 = 𝑦 → (𝑥(.g‘ℂfld)𝐵) = (𝑦(.g‘ℂfld)𝐵))
5 oveq1 5974 . . . 4 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2222 . . 3 (𝑥 = 𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵)))
7 oveq1 5974 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥(.g‘ℂfld)𝐵) = ((𝑦 + 1)(.g‘ℂfld)𝐵))
8 oveq1 5974 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2222 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 5974 . . . 4 (𝑥 = -𝑦 → (𝑥(.g‘ℂfld)𝐵) = (-𝑦(.g‘ℂfld)𝐵))
11 oveq1 5974 . . . 4 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2222 . . 3 (𝑥 = -𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
13 oveq1 5974 . . . 4 (𝑥 = 𝐴 → (𝑥(.g‘ℂfld)𝐵) = (𝐴(.g‘ℂfld)𝐵))
14 oveq1 5974 . . . 4 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2222 . . 3 (𝑥 = 𝐴 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
16 cnfldbas 14437 . . . . 5 ℂ = (Base‘ℂfld)
17 cnfld0 14448 . . . . 5 0 = (0g‘ℂfld)
18 eqid 2207 . . . . 5 (.g‘ℂfld) = (.g‘ℂfld)
1916, 17, 18mulg0 13576 . . . 4 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = 0)
20 mul02 8494 . . . 4 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2119, 20eqtr4d 2243 . . 3 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = (0 · 𝐵))
22 oveq1 5974 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵))
23 cnring 14447 . . . . . . . 8 fld ∈ Ring
24 ringmnd 13883 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2523, 24ax-mp 5 . . . . . . 7 fld ∈ Mnd
26 cnfldadd 14439 . . . . . . . 8 + = (+g‘ℂfld)
2716, 18, 26mulgnn0p1 13584 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
2825, 27mp3an1 1337 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
29 nn0cn 9340 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
3029adantr 276 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝑦 ∈ ℂ)
31 simpr 110 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3230, 31adddirp1d 8134 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + 𝐵))
3328, 32eqeq12d 2222 . . . . 5 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → (((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵)))
3422, 33imbitrrid 156 . . . 4 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
3534expcom 116 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ0 → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))))
36 fveq2 5599 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
37 eqid 2207 . . . . . . 7 (invg‘ℂfld) = (invg‘ℂfld)
3816, 18, 37mulgnegnn 13583 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦(.g‘ℂfld)𝐵) = ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)))
39 nncn 9079 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
40 mulneg1 8502 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
4139, 40sylan 283 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
42 mulcl 8087 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4339, 42sylan 283 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
44 cnfldneg 14450 . . . . . . . 8 ((𝑦 · 𝐵) ∈ ℂ → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4543, 44syl 14 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4641, 45eqtr4d 2243 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
4738, 46eqeq12d 2222 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵) ↔ ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵))))
4836, 47imbitrrid 156 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
4948expcom 116 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))))
503, 6, 9, 12, 15, 21, 35, 49zindd 9526 . 2 (𝐵 ∈ ℂ → (𝐴 ∈ ℤ → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
5150impcom 125 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965  -cneg 8279  cn 9071  0cn0 9330  cz 9407  Mndcmnd 13363  invgcminusg 13448  .gcmg 13570  Ringcrg 13873  fldccnfld 14433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-addf 8082  ax-mulf 8083
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-dec 9540  df-uz 9684  df-rp 9811  df-fz 10166  df-seqfrec 10630  df-cj 11268  df-abs 11425  df-struct 12949  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-starv 13039  df-tset 13043  df-ple 13044  df-ds 13046  df-unif 13047  df-0g 13205  df-topgen 13207  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-mulg 13571  df-cmn 13737  df-mgp 13798  df-ring 13875  df-cring 13876  df-bl 14423  df-mopn 14424  df-fg 14426  df-metu 14427  df-cnfld 14434
This theorem is referenced by:  zsssubrg  14462  zringmulg  14475  mulgrhm2  14487
  Copyright terms: Public domain W3C validator