ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfldmulg GIF version

Theorem cnfldmulg 14534
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))

Proof of Theorem cnfldmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6007 . . . 4 (𝑥 = 0 → (𝑥(.g‘ℂfld)𝐵) = (0(.g‘ℂfld)𝐵))
2 oveq1 6007 . . . 4 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2244 . . 3 (𝑥 = 0 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (0(.g‘ℂfld)𝐵) = (0 · 𝐵)))
4 oveq1 6007 . . . 4 (𝑥 = 𝑦 → (𝑥(.g‘ℂfld)𝐵) = (𝑦(.g‘ℂfld)𝐵))
5 oveq1 6007 . . . 4 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2244 . . 3 (𝑥 = 𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵)))
7 oveq1 6007 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥(.g‘ℂfld)𝐵) = ((𝑦 + 1)(.g‘ℂfld)𝐵))
8 oveq1 6007 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2244 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 6007 . . . 4 (𝑥 = -𝑦 → (𝑥(.g‘ℂfld)𝐵) = (-𝑦(.g‘ℂfld)𝐵))
11 oveq1 6007 . . . 4 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2244 . . 3 (𝑥 = -𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
13 oveq1 6007 . . . 4 (𝑥 = 𝐴 → (𝑥(.g‘ℂfld)𝐵) = (𝐴(.g‘ℂfld)𝐵))
14 oveq1 6007 . . . 4 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2244 . . 3 (𝑥 = 𝐴 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
16 cnfldbas 14518 . . . . 5 ℂ = (Base‘ℂfld)
17 cnfld0 14529 . . . . 5 0 = (0g‘ℂfld)
18 eqid 2229 . . . . 5 (.g‘ℂfld) = (.g‘ℂfld)
1916, 17, 18mulg0 13657 . . . 4 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = 0)
20 mul02 8529 . . . 4 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2119, 20eqtr4d 2265 . . 3 (𝐵 ∈ ℂ → (0(.g‘ℂfld)𝐵) = (0 · 𝐵))
22 oveq1 6007 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵))
23 cnring 14528 . . . . . . . 8 fld ∈ Ring
24 ringmnd 13964 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2523, 24ax-mp 5 . . . . . . 7 fld ∈ Mnd
26 cnfldadd 14520 . . . . . . . 8 + = (+g‘ℂfld)
2716, 18, 26mulgnn0p1 13665 . . . . . . 7 ((ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
2825, 27mp3an1 1358 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵))
29 nn0cn 9375 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
3029adantr 276 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝑦 ∈ ℂ)
31 simpr 110 . . . . . . 7 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3230, 31adddirp1d 8169 . . . . . 6 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + 𝐵))
3328, 32eqeq12d 2244 . . . . 5 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → (((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵)))
3422, 33imbitrrid 156 . . . 4 ((𝑦 ∈ ℕ0𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))
3534expcom 116 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ0 → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))))
36 fveq2 5626 . . . . 5 ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
37 eqid 2229 . . . . . . 7 (invg‘ℂfld) = (invg‘ℂfld)
3816, 18, 37mulgnegnn 13664 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦(.g‘ℂfld)𝐵) = ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)))
39 nncn 9114 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
40 mulneg1 8537 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
4139, 40sylan 283 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵))
42 mulcl 8122 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
4339, 42sylan 283 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ)
44 cnfldneg 14531 . . . . . . . 8 ((𝑦 · 𝐵) ∈ ℂ → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4543, 44syl 14 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵))
4641, 45eqtr4d 2265 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = ((invg‘ℂfld)‘(𝑦 · 𝐵)))
4738, 46eqeq12d 2244 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵) ↔ ((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) = ((invg‘ℂfld)‘(𝑦 · 𝐵))))
4836, 47imbitrrid 156 . . . 4 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))
4948expcom 116 . . 3 (𝐵 ∈ ℂ → (𝑦 ∈ ℕ → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))))
503, 6, 9, 12, 15, 21, 35, 49zindd 9561 . 2 (𝐵 ∈ ℂ → (𝐴 ∈ ℤ → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)))
5150impcom 125 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000  -cneg 8314  cn 9106  0cn0 9365  cz 9442  Mndcmnd 13444  invgcminusg 13529  .gcmg 13651  Ringcrg 13954  fldccnfld 14514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-rp 9846  df-fz 10201  df-seqfrec 10665  df-cj 11348  df-abs 11505  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-starv 13120  df-tset 13124  df-ple 13125  df-ds 13127  df-unif 13128  df-0g 13286  df-topgen 13288  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mulg 13652  df-cmn 13818  df-mgp 13879  df-ring 13956  df-cring 13957  df-bl 14504  df-mopn 14505  df-fg 14507  df-metu 14508  df-cnfld 14515
This theorem is referenced by:  zsssubrg  14543  zringmulg  14556  mulgrhm2  14568
  Copyright terms: Public domain W3C validator