| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = 0 → (𝑥(.g‘ℂfld)𝐵) =
(0(.g‘ℂfld)𝐵)) |
| 2 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵)) |
| 3 | 1, 2 | eqeq12d 2211 |
. . 3
⊢ (𝑥 = 0 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔
(0(.g‘ℂfld)𝐵) = (0 · 𝐵))) |
| 4 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥(.g‘ℂfld)𝐵) = (𝑦(.g‘ℂfld)𝐵)) |
| 5 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵)) |
| 6 | 4, 5 | eqeq12d 2211 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵))) |
| 7 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥(.g‘ℂfld)𝐵) = ((𝑦 +
1)(.g‘ℂfld)𝐵)) |
| 8 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵)) |
| 9 | 7, 8 | eqeq12d 2211 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 +
1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))) |
| 10 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑥(.g‘ℂfld)𝐵) = (-𝑦(.g‘ℂfld)𝐵)) |
| 11 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵)) |
| 12 | 10, 11 | eqeq12d 2211 |
. . 3
⊢ (𝑥 = -𝑦 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))) |
| 13 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥(.g‘ℂfld)𝐵) = (𝐴(.g‘ℂfld)𝐵)) |
| 14 | | oveq1 5929 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵)) |
| 15 | 13, 14 | eqeq12d 2211 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝑥(.g‘ℂfld)𝐵) = (𝑥 · 𝐵) ↔ (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))) |
| 16 | | cnfldbas 14116 |
. . . . 5
⊢ ℂ =
(Base‘ℂfld) |
| 17 | | cnfld0 14127 |
. . . . 5
⊢ 0 =
(0g‘ℂfld) |
| 18 | | eqid 2196 |
. . . . 5
⊢
(.g‘ℂfld) =
(.g‘ℂfld) |
| 19 | 16, 17, 18 | mulg0 13255 |
. . . 4
⊢ (𝐵 ∈ ℂ →
(0(.g‘ℂfld)𝐵) = 0) |
| 20 | | mul02 8413 |
. . . 4
⊢ (𝐵 ∈ ℂ → (0
· 𝐵) =
0) |
| 21 | 19, 20 | eqtr4d 2232 |
. . 3
⊢ (𝐵 ∈ ℂ →
(0(.g‘ℂfld)𝐵) = (0 · 𝐵)) |
| 22 | | oveq1 5929 |
. . . . 5
⊢ ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵)) |
| 23 | | cnring 14126 |
. . . . . . . 8
⊢
ℂfld ∈ Ring |
| 24 | | ringmnd 13562 |
. . . . . . . 8
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . 7
⊢
ℂfld ∈ Mnd |
| 26 | | cnfldadd 14118 |
. . . . . . . 8
⊢ + =
(+g‘ℂfld) |
| 27 | 16, 18, 26 | mulgnn0p1 13263 |
. . . . . . 7
⊢
((ℂfld ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ ℂ) → ((𝑦 +
1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵)) |
| 28 | 25, 27 | mp3an1 1335 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ 𝐵 ∈ ℂ)
→ ((𝑦 +
1)(.g‘ℂfld)𝐵) = ((𝑦(.g‘ℂfld)𝐵) + 𝐵)) |
| 29 | | nn0cn 9259 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 30 | 29 | adantr 276 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ 𝐵 ∈ ℂ)
→ 𝑦 ∈
ℂ) |
| 31 | | simpr 110 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ0
∧ 𝐵 ∈ ℂ)
→ 𝐵 ∈
ℂ) |
| 32 | 30, 31 | adddirp1d 8053 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ 𝐵 ∈ ℂ)
→ ((𝑦 + 1) ·
𝐵) = ((𝑦 · 𝐵) + 𝐵)) |
| 33 | 28, 32 | eqeq12d 2211 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ 𝐵 ∈ ℂ)
→ (((𝑦 +
1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦(.g‘ℂfld)𝐵) + 𝐵) = ((𝑦 · 𝐵) + 𝐵))) |
| 34 | 22, 33 | imbitrrid 156 |
. . . 4
⊢ ((𝑦 ∈ ℕ0
∧ 𝐵 ∈ ℂ)
→ ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 +
1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵))) |
| 35 | 34 | expcom 116 |
. . 3
⊢ (𝐵 ∈ ℂ → (𝑦 ∈ ℕ0
→ ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → ((𝑦 +
1)(.g‘ℂfld)𝐵) = ((𝑦 + 1) · 𝐵)))) |
| 36 | | fveq2 5558 |
. . . . 5
⊢ ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) →
((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) =
((invg‘ℂfld)‘(𝑦 · 𝐵))) |
| 37 | | eqid 2196 |
. . . . . . 7
⊢
(invg‘ℂfld) =
(invg‘ℂfld) |
| 38 | 16, 18, 37 | mulgnegnn 13262 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦(.g‘ℂfld)𝐵) =
((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵))) |
| 39 | | nncn 8998 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
| 40 | | mulneg1 8421 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵)) |
| 41 | 39, 40 | sylan 283 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) = -(𝑦 · 𝐵)) |
| 42 | | mulcl 8006 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ) |
| 43 | 39, 42 | sylan 283 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (𝑦 · 𝐵) ∈ ℂ) |
| 44 | | cnfldneg 14129 |
. . . . . . . 8
⊢ ((𝑦 · 𝐵) ∈ ℂ →
((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵)) |
| 45 | 43, 44 | syl 14 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) →
((invg‘ℂfld)‘(𝑦 · 𝐵)) = -(𝑦 · 𝐵)) |
| 46 | 41, 45 | eqtr4d 2232 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → (-𝑦 · 𝐵) =
((invg‘ℂfld)‘(𝑦 · 𝐵))) |
| 47 | 38, 46 | eqeq12d 2211 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵) ↔
((invg‘ℂfld)‘(𝑦(.g‘ℂfld)𝐵)) =
((invg‘ℂfld)‘(𝑦 · 𝐵)))) |
| 48 | 36, 47 | imbitrrid 156 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵))) |
| 49 | 48 | expcom 116 |
. . 3
⊢ (𝐵 ∈ ℂ → (𝑦 ∈ ℕ → ((𝑦(.g‘ℂfld)𝐵) = (𝑦 · 𝐵) → (-𝑦(.g‘ℂfld)𝐵) = (-𝑦 · 𝐵)))) |
| 50 | 3, 6, 9, 12, 15, 21, 35, 49 | zindd 9444 |
. 2
⊢ (𝐵 ∈ ℂ → (𝐴 ∈ ℤ → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))) |
| 51 | 50 | impcom 125 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) |