Step | Hyp | Ref
| Expression |
1 | | frec2uz.1 |
. 2
⊢ (𝜑 → 𝐶 ∈ ℤ) |
2 | | zex 9200 |
. . . . . . . . . . 11
⊢ ℤ
∈ V |
3 | 2 | mptex 5711 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V |
4 | | vex 2729 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
5 | 3, 4 | fvex 5506 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
6 | 5 | ax-gen 1437 |
. . . . . . . 8
⊢
∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
7 | | frecfnom 6369 |
. . . . . . . 8
⊢
((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
8 | 6, 7 | mpan 421 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ →
frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 𝐶) Fn ω) |
9 | | frec2uz.2 |
. . . . . . . 8
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
10 | 9 | fneq1i 5282 |
. . . . . . 7
⊢ (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
11 | 8, 10 | sylibr 133 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → 𝐺 Fn ω) |
12 | | fvelrnb 5534 |
. . . . . 6
⊢ (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) |
13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) |
14 | | simpl 108 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈
ℤ) |
15 | | simpr 109 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈
ω) |
16 | 14, 9, 15 | frec2uzuzd 10337 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
17 | | eleq1 2229 |
. . . . . . 7
⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) ↔ 𝑦 ∈ (ℤ≥‘𝐶))) |
18 | 16, 17 | syl5ibcom 154 |
. . . . . 6
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
19 | 18 | rexlimdva 2583 |
. . . . 5
⊢ (𝐶 ∈ ℤ →
(∃𝑧 ∈ ω
(𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
20 | 13, 19 | sylbid 149 |
. . . 4
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → 𝑦 ∈ (ℤ≥‘𝐶))) |
21 | | eleq1 2229 |
. . . . 5
⊢ (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺)) |
22 | | eleq1 2229 |
. . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺)) |
23 | | eleq1 2229 |
. . . . 5
⊢ (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺)) |
24 | | id 19 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℤ) |
25 | 24, 9 | frec2uz0d 10334 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶) |
26 | | peano1 4571 |
. . . . . . 7
⊢ ∅
∈ ω |
27 | | fnfvelrn 5617 |
. . . . . . 7
⊢ ((𝐺 Fn ω ∧ ∅ ∈
ω) → (𝐺‘∅) ∈ ran 𝐺) |
28 | 11, 26, 27 | sylancl 410 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺) |
29 | 25, 28 | eqeltrrd 2244 |
. . . . 5
⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺) |
30 | | eluzel2 9471 |
. . . . . 6
⊢ (𝑦 ∈
(ℤ≥‘𝐶) → 𝐶 ∈ ℤ) |
31 | 14, 9, 15 | frec2uzsucd 10336 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
32 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) + 1) = (𝑦 + 1)) |
33 | 31, 32 | sylan9eq 2219 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1)) |
34 | | peano2 4572 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
35 | | fnfvelrn 5617 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
36 | 11, 34, 35 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
37 | 36 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
38 | 33, 37 | eqeltrrd 2244 |
. . . . . . . . 9
⊢ (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺) |
39 | 38 | ex 114 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)) |
40 | 39 | rexlimdva 2583 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ →
(∃𝑧 ∈ ω
(𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)) |
41 | 13, 40 | sylbid 149 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
42 | 30, 41 | syl 14 |
. . . . 5
⊢ (𝑦 ∈
(ℤ≥‘𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
43 | 21, 22, 23, 22, 29, 42 | uzind4 9526 |
. . . 4
⊢ (𝑦 ∈
(ℤ≥‘𝐶) → 𝑦 ∈ ran 𝐺) |
44 | 20, 43 | impbid1 141 |
. . 3
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ (ℤ≥‘𝐶))) |
45 | 44 | eqrdv 2163 |
. 2
⊢ (𝐶 ∈ ℤ → ran 𝐺 =
(ℤ≥‘𝐶)) |
46 | 1, 45 | syl 14 |
1
⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) |