ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand GIF version

Theorem frec2uzrand 10431
Description: Range of 𝐺 (see frec2uz0d 10425). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzrand (𝜑 → ran 𝐺 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzrand
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2 (𝜑𝐶 ∈ ℤ)
2 zex 9287 . . . . . . . . . . 11 ℤ ∈ V
32mptex 5759 . . . . . . . . . 10 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
4 vex 2755 . . . . . . . . . 10 𝑧 ∈ V
53, 4fvex 5551 . . . . . . . . 9 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
65ax-gen 1460 . . . . . . . 8 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
7 frecfnom 6421 . . . . . . . 8 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
86, 7mpan 424 . . . . . . 7 (𝐶 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5326 . . . . . . 7 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . . . 6 (𝐶 ∈ ℤ → 𝐺 Fn ω)
12 fvelrnb 5580 . . . . . 6 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
1311, 12syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
14 simpl 109 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
15 simpr 110 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
1614, 9, 15frec2uzuzd 10428 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺𝑧) ∈ (ℤ𝐶))
17 eleq1 2252 . . . . . . 7 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
1816, 17syl5ibcom 155 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1918rexlimdva 2607 . . . . 5 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
2013, 19sylbid 150 . . . 4 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
21 eleq1 2252 . . . . 5 (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
22 eleq1 2252 . . . . 5 (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
23 eleq1 2252 . . . . 5 (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
24 id 19 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℤ)
2524, 9frec2uz0d 10425 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶)
26 peano1 4608 . . . . . . 7 ∅ ∈ ω
27 fnfvelrn 5665 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
2811, 26, 27sylancl 413 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺)
2925, 28eqeltrrd 2267 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺)
30 eluzel2 9558 . . . . . 6 (𝑦 ∈ (ℤ𝐶) → 𝐶 ∈ ℤ)
3114, 9, 15frec2uzsucd 10427 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
32 oveq1 5899 . . . . . . . . . . 11 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
3331, 32sylan9eq 2242 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
34 peano2 4609 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
35 fnfvelrn 5665 . . . . . . . . . . . 12 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3611, 34, 35syl2an 289 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3736adantr 276 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3833, 37eqeltrrd 2267 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
3938ex 115 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4039rexlimdva 2607 . . . . . . 7 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4113, 40sylbid 150 . . . . . 6 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4230, 41syl 14 . . . . 5 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4321, 22, 23, 22, 29, 42uzind4 9613 . . . 4 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
4420, 43impbid1 142 . . 3 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
4544eqrdv 2187 . 2 (𝐶 ∈ ℤ → ran 𝐺 = (ℤ𝐶))
461, 45syl 14 1 (𝜑 → ran 𝐺 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wcel 2160  wrex 2469  Vcvv 2752  c0 3437  cmpt 4079  suc csuc 4380  ωcom 4604  ran crn 4642   Fn wfn 5227  cfv 5232  (class class class)co 5892  freccfrec 6410  1c1 7837   + caddc 7839  cz 9278  cuz 9553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-recs 6325  df-frec 6411  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-inn 8945  df-n0 9202  df-z 9279  df-uz 9554
This theorem is referenced by:  frec2uzf1od  10432
  Copyright terms: Public domain W3C validator