| Step | Hyp | Ref
| Expression |
| 1 | | frec2uz.1 |
. 2
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 2 | | zex 9352 |
. . . . . . . . . . 11
⊢ ℤ
∈ V |
| 3 | 2 | mptex 5791 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V |
| 4 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 5 | 3, 4 | fvex 5581 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
| 6 | 5 | ax-gen 1463 |
. . . . . . . 8
⊢
∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
| 7 | | frecfnom 6468 |
. . . . . . . 8
⊢
((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
| 8 | 6, 7 | mpan 424 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ →
frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 𝐶) Fn ω) |
| 9 | | frec2uz.2 |
. . . . . . . 8
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| 10 | 9 | fneq1i 5353 |
. . . . . . 7
⊢ (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
| 11 | 8, 10 | sylibr 134 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → 𝐺 Fn ω) |
| 12 | | fvelrnb 5611 |
. . . . . 6
⊢ (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺‘𝑧) = 𝑦)) |
| 14 | | simpl 109 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈
ℤ) |
| 15 | | simpr 110 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈
ω) |
| 16 | 14, 9, 15 | frec2uzuzd 10511 |
. . . . . . 7
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
| 17 | | eleq1 2259 |
. . . . . . 7
⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) ↔ 𝑦 ∈ (ℤ≥‘𝐶))) |
| 18 | 16, 17 | syl5ibcom 155 |
. . . . . 6
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
| 19 | 18 | rexlimdva 2614 |
. . . . 5
⊢ (𝐶 ∈ ℤ →
(∃𝑧 ∈ ω
(𝐺‘𝑧) = 𝑦 → 𝑦 ∈ (ℤ≥‘𝐶))) |
| 20 | 13, 19 | sylbid 150 |
. . . 4
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → 𝑦 ∈ (ℤ≥‘𝐶))) |
| 21 | | eleq1 2259 |
. . . . 5
⊢ (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺)) |
| 22 | | eleq1 2259 |
. . . . 5
⊢ (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺)) |
| 23 | | eleq1 2259 |
. . . . 5
⊢ (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺)) |
| 24 | | id 19 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℤ) |
| 25 | 24, 9 | frec2uz0d 10508 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶) |
| 26 | | peano1 4631 |
. . . . . . 7
⊢ ∅
∈ ω |
| 27 | | fnfvelrn 5697 |
. . . . . . 7
⊢ ((𝐺 Fn ω ∧ ∅ ∈
ω) → (𝐺‘∅) ∈ ran 𝐺) |
| 28 | 11, 26, 27 | sylancl 413 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺) |
| 29 | 25, 28 | eqeltrrd 2274 |
. . . . 5
⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺) |
| 30 | | eluzel2 9623 |
. . . . . 6
⊢ (𝑦 ∈
(ℤ≥‘𝐶) → 𝐶 ∈ ℤ) |
| 31 | 14, 9, 15 | frec2uzsucd 10510 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 32 | | oveq1 5932 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑧) = 𝑦 → ((𝐺‘𝑧) + 1) = (𝑦 + 1)) |
| 33 | 31, 32 | sylan9eq 2249 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1)) |
| 34 | | peano2 4632 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ω → suc 𝑧 ∈
ω) |
| 35 | | fnfvelrn 5697 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 36 | 11, 34, 35 | syl2an 289 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 37 | 36 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺) |
| 38 | 33, 37 | eqeltrrd 2274 |
. . . . . . . . 9
⊢ (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺) |
| 39 | 38 | ex 115 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)) |
| 40 | 39 | rexlimdva 2614 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ →
(∃𝑧 ∈ ω
(𝐺‘𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺)) |
| 41 | 13, 40 | sylbid 150 |
. . . . . 6
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
| 42 | 30, 41 | syl 14 |
. . . . 5
⊢ (𝑦 ∈
(ℤ≥‘𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺)) |
| 43 | 21, 22, 23, 22, 29, 42 | uzind4 9679 |
. . . 4
⊢ (𝑦 ∈
(ℤ≥‘𝐶) → 𝑦 ∈ ran 𝐺) |
| 44 | 20, 43 | impbid1 142 |
. . 3
⊢ (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ (ℤ≥‘𝐶))) |
| 45 | 44 | eqrdv 2194 |
. 2
⊢ (𝐶 ∈ ℤ → ran 𝐺 =
(ℤ≥‘𝐶)) |
| 46 | 1, 45 | syl 14 |
1
⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) |