ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand GIF version

Theorem frec2uzrand 10531
Description: Range of 𝐺 (see frec2uz0d 10525). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzrand (𝜑 → ran 𝐺 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzrand
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2 (𝜑𝐶 ∈ ℤ)
2 zex 9363 . . . . . . . . . . 11 ℤ ∈ V
32mptex 5800 . . . . . . . . . 10 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
4 vex 2774 . . . . . . . . . 10 𝑧 ∈ V
53, 4fvex 5590 . . . . . . . . 9 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
65ax-gen 1471 . . . . . . . 8 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
7 frecfnom 6477 . . . . . . . 8 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
86, 7mpan 424 . . . . . . 7 (𝐶 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5362 . . . . . . 7 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . . . 6 (𝐶 ∈ ℤ → 𝐺 Fn ω)
12 fvelrnb 5620 . . . . . 6 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
1311, 12syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
14 simpl 109 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
15 simpr 110 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
1614, 9, 15frec2uzuzd 10528 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺𝑧) ∈ (ℤ𝐶))
17 eleq1 2267 . . . . . . 7 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
1816, 17syl5ibcom 155 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1918rexlimdva 2622 . . . . 5 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
2013, 19sylbid 150 . . . 4 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
21 eleq1 2267 . . . . 5 (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
22 eleq1 2267 . . . . 5 (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
23 eleq1 2267 . . . . 5 (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
24 id 19 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℤ)
2524, 9frec2uz0d 10525 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶)
26 peano1 4640 . . . . . . 7 ∅ ∈ ω
27 fnfvelrn 5706 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
2811, 26, 27sylancl 413 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺)
2925, 28eqeltrrd 2282 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺)
30 eluzel2 9635 . . . . . 6 (𝑦 ∈ (ℤ𝐶) → 𝐶 ∈ ℤ)
3114, 9, 15frec2uzsucd 10527 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
32 oveq1 5941 . . . . . . . . . . 11 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
3331, 32sylan9eq 2257 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
34 peano2 4641 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
35 fnfvelrn 5706 . . . . . . . . . . . 12 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3611, 34, 35syl2an 289 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3736adantr 276 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3833, 37eqeltrrd 2282 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
3938ex 115 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4039rexlimdva 2622 . . . . . . 7 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4113, 40sylbid 150 . . . . . 6 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4230, 41syl 14 . . . . 5 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4321, 22, 23, 22, 29, 42uzind4 9691 . . . 4 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
4420, 43impbid1 142 . . 3 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
4544eqrdv 2202 . 2 (𝐶 ∈ ℤ → ran 𝐺 = (ℤ𝐶))
461, 45syl 14 1 (𝜑 → ran 𝐺 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370   = wceq 1372  wcel 2175  wrex 2484  Vcvv 2771  c0 3459  cmpt 4104  suc csuc 4410  ωcom 4636  ran crn 4674   Fn wfn 5263  cfv 5268  (class class class)co 5934  freccfrec 6466  1c1 7908   + caddc 7910  cz 9354  cuz 9630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631
This theorem is referenced by:  frec2uzf1od  10532
  Copyright terms: Public domain W3C validator