ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand GIF version

Theorem frec2uzrand 10185
Description: Range of 𝐺 (see frec2uz0d 10179). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzrand (𝜑 → ran 𝐺 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzrand
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2 (𝜑𝐶 ∈ ℤ)
2 zex 9070 . . . . . . . . . . 11 ℤ ∈ V
32mptex 5646 . . . . . . . . . 10 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
4 vex 2689 . . . . . . . . . 10 𝑧 ∈ V
53, 4fvex 5441 . . . . . . . . 9 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
65ax-gen 1425 . . . . . . . 8 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
7 frecfnom 6298 . . . . . . . 8 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
86, 7mpan 420 . . . . . . 7 (𝐶 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5217 . . . . . . 7 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 133 . . . . . 6 (𝐶 ∈ ℤ → 𝐺 Fn ω)
12 fvelrnb 5469 . . . . . 6 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
1311, 12syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
14 simpl 108 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
15 simpr 109 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
1614, 9, 15frec2uzuzd 10182 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺𝑧) ∈ (ℤ𝐶))
17 eleq1 2202 . . . . . . 7 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
1816, 17syl5ibcom 154 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1918rexlimdva 2549 . . . . 5 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
2013, 19sylbid 149 . . . 4 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
21 eleq1 2202 . . . . 5 (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
22 eleq1 2202 . . . . 5 (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
23 eleq1 2202 . . . . 5 (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
24 id 19 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℤ)
2524, 9frec2uz0d 10179 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶)
26 peano1 4508 . . . . . . 7 ∅ ∈ ω
27 fnfvelrn 5552 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
2811, 26, 27sylancl 409 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺)
2925, 28eqeltrrd 2217 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺)
30 eluzel2 9338 . . . . . 6 (𝑦 ∈ (ℤ𝐶) → 𝐶 ∈ ℤ)
3114, 9, 15frec2uzsucd 10181 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
32 oveq1 5781 . . . . . . . . . . 11 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
3331, 32sylan9eq 2192 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
34 peano2 4509 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
35 fnfvelrn 5552 . . . . . . . . . . . 12 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3611, 34, 35syl2an 287 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3736adantr 274 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3833, 37eqeltrrd 2217 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
3938ex 114 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4039rexlimdva 2549 . . . . . . 7 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4113, 40sylbid 149 . . . . . 6 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4230, 41syl 14 . . . . 5 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4321, 22, 23, 22, 29, 42uzind4 9390 . . . 4 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
4420, 43impbid1 141 . . 3 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
4544eqrdv 2137 . 2 (𝐶 ∈ ℤ → ran 𝐺 = (ℤ𝐶))
461, 45syl 14 1 (𝜑 → ran 𝐺 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  wrex 2417  Vcvv 2686  c0 3363  cmpt 3989  suc csuc 4287  ωcom 4504  ran crn 4540   Fn wfn 5118  cfv 5123  (class class class)co 5774  freccfrec 6287  1c1 7628   + caddc 7630  cz 9061  cuz 9333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334
This theorem is referenced by:  frec2uzf1od  10186
  Copyright terms: Public domain W3C validator