ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand GIF version

Theorem frec2uzrand 10391
Description: Range of 𝐺 (see frec2uz0d 10385). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzrand (𝜑 → ran 𝐺 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzrand
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2 (𝜑𝐶 ∈ ℤ)
2 zex 9251 . . . . . . . . . . 11 ℤ ∈ V
32mptex 5738 . . . . . . . . . 10 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
4 vex 2740 . . . . . . . . . 10 𝑧 ∈ V
53, 4fvex 5531 . . . . . . . . 9 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
65ax-gen 1449 . . . . . . . 8 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
7 frecfnom 6396 . . . . . . . 8 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
86, 7mpan 424 . . . . . . 7 (𝐶 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5306 . . . . . . 7 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . . . 6 (𝐶 ∈ ℤ → 𝐺 Fn ω)
12 fvelrnb 5559 . . . . . 6 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
1311, 12syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
14 simpl 109 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
15 simpr 110 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
1614, 9, 15frec2uzuzd 10388 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺𝑧) ∈ (ℤ𝐶))
17 eleq1 2240 . . . . . . 7 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
1816, 17syl5ibcom 155 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1918rexlimdva 2594 . . . . 5 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
2013, 19sylbid 150 . . . 4 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
21 eleq1 2240 . . . . 5 (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
22 eleq1 2240 . . . . 5 (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
23 eleq1 2240 . . . . 5 (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
24 id 19 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℤ)
2524, 9frec2uz0d 10385 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶)
26 peano1 4590 . . . . . . 7 ∅ ∈ ω
27 fnfvelrn 5644 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
2811, 26, 27sylancl 413 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺)
2925, 28eqeltrrd 2255 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺)
30 eluzel2 9522 . . . . . 6 (𝑦 ∈ (ℤ𝐶) → 𝐶 ∈ ℤ)
3114, 9, 15frec2uzsucd 10387 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
32 oveq1 5876 . . . . . . . . . . 11 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
3331, 32sylan9eq 2230 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
34 peano2 4591 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
35 fnfvelrn 5644 . . . . . . . . . . . 12 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3611, 34, 35syl2an 289 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3736adantr 276 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3833, 37eqeltrrd 2255 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
3938ex 115 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4039rexlimdva 2594 . . . . . . 7 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4113, 40sylbid 150 . . . . . 6 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4230, 41syl 14 . . . . 5 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4321, 22, 23, 22, 29, 42uzind4 9577 . . . 4 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
4420, 43impbid1 142 . . 3 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
4544eqrdv 2175 . 2 (𝐶 ∈ ℤ → ran 𝐺 = (ℤ𝐶))
461, 45syl 14 1 (𝜑 → ran 𝐺 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wcel 2148  wrex 2456  Vcvv 2737  c0 3422  cmpt 4061  suc csuc 4362  ωcom 4586  ran crn 4624   Fn wfn 5207  cfv 5212  (class class class)co 5869  freccfrec 6385  1c1 7803   + caddc 7805  cz 9242  cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518
This theorem is referenced by:  frec2uzf1od  10392
  Copyright terms: Public domain W3C validator