ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrand GIF version

Theorem frec2uzrand 10548
Description: Range of 𝐺 (see frec2uz0d 10542). (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzrand (𝜑 → ran 𝐺 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzrand
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . 2 (𝜑𝐶 ∈ ℤ)
2 zex 9380 . . . . . . . . . . 11 ℤ ∈ V
32mptex 5809 . . . . . . . . . 10 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
4 vex 2774 . . . . . . . . . 10 𝑧 ∈ V
53, 4fvex 5595 . . . . . . . . 9 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
65ax-gen 1471 . . . . . . . 8 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
7 frecfnom 6486 . . . . . . . 8 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
86, 7mpan 424 . . . . . . 7 (𝐶 ∈ ℤ → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . . . 8 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5367 . . . . . . 7 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . . . 6 (𝐶 ∈ ℤ → 𝐺 Fn ω)
12 fvelrnb 5625 . . . . . 6 (𝐺 Fn ω → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
1311, 12syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 ↔ ∃𝑧 ∈ ω (𝐺𝑧) = 𝑦))
14 simpl 109 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
15 simpr 110 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
1614, 9, 15frec2uzuzd 10545 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺𝑧) ∈ (ℤ𝐶))
17 eleq1 2267 . . . . . . 7 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) ∈ (ℤ𝐶) ↔ 𝑦 ∈ (ℤ𝐶)))
1816, 17syl5ibcom 155 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
1918rexlimdva 2622 . . . . 5 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦𝑦 ∈ (ℤ𝐶)))
2013, 19sylbid 150 . . . 4 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
21 eleq1 2267 . . . . 5 (𝑤 = 𝐶 → (𝑤 ∈ ran 𝐺𝐶 ∈ ran 𝐺))
22 eleq1 2267 . . . . 5 (𝑤 = 𝑦 → (𝑤 ∈ ran 𝐺𝑦 ∈ ran 𝐺))
23 eleq1 2267 . . . . 5 (𝑤 = (𝑦 + 1) → (𝑤 ∈ ran 𝐺 ↔ (𝑦 + 1) ∈ ran 𝐺))
24 id 19 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℤ)
2524, 9frec2uz0d 10542 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) = 𝐶)
26 peano1 4641 . . . . . . 7 ∅ ∈ ω
27 fnfvelrn 5711 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
2811, 26, 27sylancl 413 . . . . . 6 (𝐶 ∈ ℤ → (𝐺‘∅) ∈ ran 𝐺)
2925, 28eqeltrrd 2282 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ran 𝐺)
30 eluzel2 9652 . . . . . 6 (𝑦 ∈ (ℤ𝐶) → 𝐶 ∈ ℤ)
3114, 9, 15frec2uzsucd 10544 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
32 oveq1 5950 . . . . . . . . . . 11 ((𝐺𝑧) = 𝑦 → ((𝐺𝑧) + 1) = (𝑦 + 1))
3331, 32sylan9eq 2257 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) = (𝑦 + 1))
34 peano2 4642 . . . . . . . . . . . 12 (𝑧 ∈ ω → suc 𝑧 ∈ ω)
35 fnfvelrn 5711 . . . . . . . . . . . 12 ((𝐺 Fn ω ∧ suc 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3611, 34, 35syl2an 289 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3736adantr 276 . . . . . . . . . 10 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝐺‘suc 𝑧) ∈ ran 𝐺)
3833, 37eqeltrrd 2282 . . . . . . . . 9 (((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) ∧ (𝐺𝑧) = 𝑦) → (𝑦 + 1) ∈ ran 𝐺)
3938ex 115 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑧 ∈ ω) → ((𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4039rexlimdva 2622 . . . . . . 7 (𝐶 ∈ ℤ → (∃𝑧 ∈ ω (𝐺𝑧) = 𝑦 → (𝑦 + 1) ∈ ran 𝐺))
4113, 40sylbid 150 . . . . . 6 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4230, 41syl 14 . . . . 5 (𝑦 ∈ (ℤ𝐶) → (𝑦 ∈ ran 𝐺 → (𝑦 + 1) ∈ ran 𝐺))
4321, 22, 23, 22, 29, 42uzind4 9708 . . . 4 (𝑦 ∈ (ℤ𝐶) → 𝑦 ∈ ran 𝐺)
4420, 43impbid1 142 . . 3 (𝐶 ∈ ℤ → (𝑦 ∈ ran 𝐺𝑦 ∈ (ℤ𝐶)))
4544eqrdv 2202 . 2 (𝐶 ∈ ℤ → ran 𝐺 = (ℤ𝐶))
461, 45syl 14 1 (𝜑 → ran 𝐺 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370   = wceq 1372  wcel 2175  wrex 2484  Vcvv 2771  c0 3459  cmpt 4104  suc csuc 4411  ωcom 4637  ran crn 4675   Fn wfn 5265  cfv 5270  (class class class)co 5943  freccfrec 6475  1c1 7925   + caddc 7927  cz 9371  cuz 9647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648
This theorem is referenced by:  frec2uzf1od  10549
  Copyright terms: Public domain W3C validator