ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdom GIF version

Theorem brdom 6862
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
brdom (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdom
StepHypRef Expression
1 bren.1 . 2 𝐵 ∈ V
2 brdomg 6860 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1516  wcel 2178  Vcvv 2776   class class class wbr 4059  1-1wf1 5287  cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-fn 5293  df-f 5294  df-f1 5295  df-dom 6852
This theorem is referenced by:  domen  6863  domtr  6900  sbthlemi10  7094
  Copyright terms: Public domain W3C validator