ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex GIF version

Theorem ovshftex 11215
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)

Proof of Theorem ovshftex
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 11214 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
21ancoms 268 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
3 cnex 8079 . . . 4 ℂ ∈ V
43a1i 9 . . 3 ((𝐹𝑉𝐴 ∈ ℂ) → ℂ ∈ V)
5 rnexg 4957 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
65ad2antrr 488 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V)
7 vex 2776 . . . . . . . 8 𝑢 ∈ V
8 breq2 4058 . . . . . . . 8 (𝑤 = 𝑢 → ((𝑧𝐴)𝐹𝑤 ↔ (𝑧𝐴)𝐹𝑢))
97, 8elab 2921 . . . . . . 7 (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ↔ (𝑧𝐴)𝐹𝑢)
10 simpr 110 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
11 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1210, 11subcld 8413 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
13 brelrng 4923 . . . . . . . . . 10 (((𝑧𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
147, 13mp3an2 1338 . . . . . . . . 9 (((𝑧𝐴) ∈ ℂ ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1512, 14sylan 283 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1615ex 115 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴)𝐹𝑢𝑢 ∈ ran 𝐹))
179, 16biimtrid 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹))
1817ssrdv 3203 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
1918adantll 476 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
206, 19ssexd 4195 . . 3 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ∈ V)
214, 20opabex3d 6224 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} ∈ V)
222, 21eqeltrd 2283 1 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  wss 3170   class class class wbr 4054  {copab 4115  ran crn 4689  (class class class)co 5962  cc 7953  cmin 8273   shift cshi 11210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-sub 8275  df-shft 11211
This theorem is referenced by:  2shfti  11227  climshftlemg  11698  climshft  11700  climshft2  11702  eftlub  12086
  Copyright terms: Public domain W3C validator