ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex GIF version

Theorem ovshftex 11072
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)

Proof of Theorem ovshftex
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 11071 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
21ancoms 268 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
3 cnex 8048 . . . 4 ℂ ∈ V
43a1i 9 . . 3 ((𝐹𝑉𝐴 ∈ ℂ) → ℂ ∈ V)
5 rnexg 4942 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
65ad2antrr 488 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V)
7 vex 2774 . . . . . . . 8 𝑢 ∈ V
8 breq2 4047 . . . . . . . 8 (𝑤 = 𝑢 → ((𝑧𝐴)𝐹𝑤 ↔ (𝑧𝐴)𝐹𝑢))
97, 8elab 2916 . . . . . . 7 (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ↔ (𝑧𝐴)𝐹𝑢)
10 simpr 110 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
11 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1210, 11subcld 8382 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
13 brelrng 4908 . . . . . . . . . 10 (((𝑧𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
147, 13mp3an2 1337 . . . . . . . . 9 (((𝑧𝐴) ∈ ℂ ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1512, 14sylan 283 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1615ex 115 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴)𝐹𝑢𝑢 ∈ ran 𝐹))
179, 16biimtrid 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹))
1817ssrdv 3198 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
1918adantll 476 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
206, 19ssexd 4183 . . 3 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ∈ V)
214, 20opabex3d 6205 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} ∈ V)
222, 21eqeltrd 2281 1 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {cab 2190  Vcvv 2771  wss 3165   class class class wbr 4043  {copab 4103  ran crn 4675  (class class class)co 5943  cc 7922  cmin 8242   shift cshi 11067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-shft 11068
This theorem is referenced by:  2shfti  11084  climshftlemg  11555  climshft  11557  climshft2  11559  eftlub  11943
  Copyright terms: Public domain W3C validator