Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovshftex | GIF version |
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.) |
Ref | Expression |
---|---|
ovshftex | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfvalg 10760 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) | |
2 | 1 | ancoms 266 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) |
3 | cnex 7877 | . . . 4 ⊢ ℂ ∈ V | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → ℂ ∈ V) |
5 | rnexg 4869 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
6 | 5 | ad2antrr 480 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V) |
7 | vex 2729 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
8 | breq2 3986 | . . . . . . . 8 ⊢ (𝑤 = 𝑢 → ((𝑧 − 𝐴)𝐹𝑤 ↔ (𝑧 − 𝐴)𝐹𝑢)) | |
9 | 7, 8 | elab 2870 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ↔ (𝑧 − 𝐴)𝐹𝑢) |
10 | simpr 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
11 | simpl 108 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
12 | 10, 11 | subcld 8209 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
13 | brelrng 4835 | . . . . . . . . . 10 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) | |
14 | 7, 13 | mp3an2 1315 | . . . . . . . . 9 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
15 | 12, 14 | sylan 281 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
16 | 15 | ex 114 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴)𝐹𝑢 → 𝑢 ∈ ran 𝐹)) |
17 | 9, 16 | syl5bi 151 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹)) |
18 | 17 | ssrdv 3148 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
19 | 18 | adantll 468 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
20 | 6, 19 | ssexd 4122 | . . 3 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ∈ V) |
21 | 4, 20 | opabex3d 6089 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)} ∈ V) |
22 | 2, 21 | eqeltrd 2243 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 ⊆ wss 3116 class class class wbr 3982 {copab 4042 ran crn 4605 (class class class)co 5842 ℂcc 7751 − cmin 8069 shift cshi 10756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-shft 10757 |
This theorem is referenced by: 2shfti 10773 climshftlemg 11243 climshft 11245 climshft2 11247 eftlub 11631 |
Copyright terms: Public domain | W3C validator |