| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovshftex | GIF version | ||
| Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovshftex | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfvalg 11214 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) |
| 3 | cnex 8079 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → ℂ ∈ V) |
| 5 | rnexg 4957 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 6 | 5 | ad2antrr 488 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V) |
| 7 | vex 2776 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
| 8 | breq2 4058 | . . . . . . . 8 ⊢ (𝑤 = 𝑢 → ((𝑧 − 𝐴)𝐹𝑤 ↔ (𝑧 − 𝐴)𝐹𝑢)) | |
| 9 | 7, 8 | elab 2921 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ↔ (𝑧 − 𝐴)𝐹𝑢) |
| 10 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 11 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 12 | 10, 11 | subcld 8413 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
| 13 | brelrng 4923 | . . . . . . . . . 10 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) | |
| 14 | 7, 13 | mp3an2 1338 | . . . . . . . . 9 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
| 15 | 12, 14 | sylan 283 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
| 16 | 15 | ex 115 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴)𝐹𝑢 → 𝑢 ∈ ran 𝐹)) |
| 17 | 9, 16 | biimtrid 152 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹)) |
| 18 | 17 | ssrdv 3203 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
| 19 | 18 | adantll 476 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
| 20 | 6, 19 | ssexd 4195 | . . 3 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ∈ V) |
| 21 | 4, 20 | opabex3d 6224 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)} ∈ V) |
| 22 | 2, 21 | eqeltrd 2283 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⊆ wss 3170 class class class wbr 4054 {copab 4115 ran crn 4689 (class class class)co 5962 ℂcc 7953 − cmin 8273 shift cshi 11210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-sub 8275 df-shft 11211 |
| This theorem is referenced by: 2shfti 11227 climshftlemg 11698 climshft 11700 climshft2 11702 eftlub 12086 |
| Copyright terms: Public domain | W3C validator |