![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovshftex | GIF version |
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.) |
Ref | Expression |
---|---|
ovshftex | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfvalg 10858 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) | |
2 | 1 | ancoms 268 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) |
3 | cnex 7964 | . . . 4 ⊢ ℂ ∈ V | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → ℂ ∈ V) |
5 | rnexg 4910 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
6 | 5 | ad2antrr 488 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V) |
7 | vex 2755 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
8 | breq2 4022 | . . . . . . . 8 ⊢ (𝑤 = 𝑢 → ((𝑧 − 𝐴)𝐹𝑤 ↔ (𝑧 − 𝐴)𝐹𝑢)) | |
9 | 7, 8 | elab 2896 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ↔ (𝑧 − 𝐴)𝐹𝑢) |
10 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
11 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
12 | 10, 11 | subcld 8297 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
13 | brelrng 4876 | . . . . . . . . . 10 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) | |
14 | 7, 13 | mp3an2 1336 | . . . . . . . . 9 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
15 | 12, 14 | sylan 283 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
16 | 15 | ex 115 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴)𝐹𝑢 → 𝑢 ∈ ran 𝐹)) |
17 | 9, 16 | biimtrid 152 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹)) |
18 | 17 | ssrdv 3176 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
19 | 18 | adantll 476 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
20 | 6, 19 | ssexd 4158 | . . 3 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ∈ V) |
21 | 4, 20 | opabex3d 6145 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)} ∈ V) |
22 | 2, 21 | eqeltrd 2266 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 {cab 2175 Vcvv 2752 ⊆ wss 3144 class class class wbr 4018 {copab 4078 ran crn 4645 (class class class)co 5895 ℂcc 7838 − cmin 8157 shift cshi 10854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-distr 7944 ax-i2m1 7945 ax-0id 7948 ax-rnegex 7949 ax-cnre 7951 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-sub 8159 df-shft 10855 |
This theorem is referenced by: 2shfti 10871 climshftlemg 11341 climshft 11343 climshft2 11345 eftlub 11729 |
Copyright terms: Public domain | W3C validator |