ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex GIF version

Theorem ovshftex 10432
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)

Proof of Theorem ovshftex
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 10431 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
21ancoms 266 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
3 cnex 7616 . . . 4 ℂ ∈ V
43a1i 9 . . 3 ((𝐹𝑉𝐴 ∈ ℂ) → ℂ ∈ V)
5 rnexg 4740 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
65ad2antrr 475 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V)
7 vex 2644 . . . . . . . 8 𝑢 ∈ V
8 breq2 3879 . . . . . . . 8 (𝑤 = 𝑢 → ((𝑧𝐴)𝐹𝑤 ↔ (𝑧𝐴)𝐹𝑢))
97, 8elab 2782 . . . . . . 7 (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ↔ (𝑧𝐴)𝐹𝑢)
10 simpr 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
11 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1210, 11subcld 7944 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
13 brelrng 4708 . . . . . . . . . 10 (((𝑧𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
147, 13mp3an2 1271 . . . . . . . . 9 (((𝑧𝐴) ∈ ℂ ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1512, 14sylan 279 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1615ex 114 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴)𝐹𝑢𝑢 ∈ ran 𝐹))
179, 16syl5bi 151 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹))
1817ssrdv 3053 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
1918adantll 463 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
206, 19ssexd 4008 . . 3 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ∈ V)
214, 20opabex3d 5950 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} ∈ V)
222, 21eqeltrd 2176 1 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  {cab 2086  Vcvv 2641  wss 3021   class class class wbr 3875  {copab 3928  ran crn 4478  (class class class)co 5706  cc 7498  cmin 7804   shift cshi 10427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-sub 7806  df-shft 10428
This theorem is referenced by:  2shfti  10444  climshftlemg  10910  climshft  10912  climshft2  10914  eftlub  11194
  Copyright terms: Public domain W3C validator