| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovshftex | GIF version | ||
| Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.) |
| Ref | Expression |
|---|---|
| ovshftex | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfvalg 11000 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)}) |
| 3 | cnex 8020 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → ℂ ∈ V) |
| 5 | rnexg 4932 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | |
| 6 | 5 | ad2antrr 488 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V) |
| 7 | vex 2766 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
| 8 | breq2 4038 | . . . . . . . 8 ⊢ (𝑤 = 𝑢 → ((𝑧 − 𝐴)𝐹𝑤 ↔ (𝑧 − 𝐴)𝐹𝑢)) | |
| 9 | 7, 8 | elab 2908 | . . . . . . 7 ⊢ (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ↔ (𝑧 − 𝐴)𝐹𝑢) |
| 10 | simpr 110 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 11 | simpl 109 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 12 | 10, 11 | subcld 8354 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
| 13 | brelrng 4898 | . . . . . . . . . 10 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) | |
| 14 | 7, 13 | mp3an2 1336 | . . . . . . . . 9 ⊢ (((𝑧 − 𝐴) ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
| 15 | 12, 14 | sylan 283 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧 − 𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹) |
| 16 | 15 | ex 115 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧 − 𝐴)𝐹𝑢 → 𝑢 ∈ ran 𝐹)) |
| 17 | 9, 16 | biimtrid 152 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹)) |
| 18 | 17 | ssrdv 3190 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
| 19 | 18 | adantll 476 | . . . 4 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ⊆ ran 𝐹) |
| 20 | 6, 19 | ssexd 4174 | . . 3 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧 − 𝐴)𝐹𝑤} ∈ V) |
| 21 | 4, 20 | opabex3d 6187 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ℂ ∧ (𝑧 − 𝐴)𝐹𝑤)} ∈ V) |
| 22 | 2, 21 | eqeltrd 2273 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ⊆ wss 3157 class class class wbr 4034 {copab 4094 ran crn 4665 (class class class)co 5925 ℂcc 7894 − cmin 8214 shift cshi 10996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-shft 10997 |
| This theorem is referenced by: 2shfti 11013 climshftlemg 11484 climshft 11486 climshft2 11488 eftlub 11872 |
| Copyright terms: Public domain | W3C validator |