ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex GIF version

Theorem ovshftex 10963
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)

Proof of Theorem ovshftex
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 10962 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
21ancoms 268 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
3 cnex 7996 . . . 4 ℂ ∈ V
43a1i 9 . . 3 ((𝐹𝑉𝐴 ∈ ℂ) → ℂ ∈ V)
5 rnexg 4927 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
65ad2antrr 488 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V)
7 vex 2763 . . . . . . . 8 𝑢 ∈ V
8 breq2 4033 . . . . . . . 8 (𝑤 = 𝑢 → ((𝑧𝐴)𝐹𝑤 ↔ (𝑧𝐴)𝐹𝑢))
97, 8elab 2904 . . . . . . 7 (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ↔ (𝑧𝐴)𝐹𝑢)
10 simpr 110 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
11 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1210, 11subcld 8330 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
13 brelrng 4893 . . . . . . . . . 10 (((𝑧𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
147, 13mp3an2 1336 . . . . . . . . 9 (((𝑧𝐴) ∈ ℂ ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1512, 14sylan 283 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1615ex 115 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴)𝐹𝑢𝑢 ∈ ran 𝐹))
179, 16biimtrid 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹))
1817ssrdv 3185 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
1918adantll 476 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
206, 19ssexd 4169 . . 3 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ∈ V)
214, 20opabex3d 6173 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} ∈ V)
222, 21eqeltrd 2270 1 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  wss 3153   class class class wbr 4029  {copab 4089  ran crn 4660  (class class class)co 5918  cc 7870  cmin 8190   shift cshi 10958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-shft 10959
This theorem is referenced by:  2shfti  10975  climshftlemg  11445  climshft  11447  climshft2  11449  eftlub  11833
  Copyright terms: Public domain W3C validator