ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovshftex GIF version

Theorem ovshftex 11130
Description: Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
Assertion
Ref Expression
ovshftex ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)

Proof of Theorem ovshftex
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfvalg 11129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
21ancoms 268 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)})
3 cnex 8049 . . . 4 ℂ ∈ V
43a1i 9 . . 3 ((𝐹𝑉𝐴 ∈ ℂ) → ℂ ∈ V)
5 rnexg 4943 . . . . 5 (𝐹𝑉 → ran 𝐹 ∈ V)
65ad2antrr 488 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → ran 𝐹 ∈ V)
7 vex 2775 . . . . . . . 8 𝑢 ∈ V
8 breq2 4048 . . . . . . . 8 (𝑤 = 𝑢 → ((𝑧𝐴)𝐹𝑤 ↔ (𝑧𝐴)𝐹𝑢))
97, 8elab 2917 . . . . . . 7 (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ↔ (𝑧𝐴)𝐹𝑢)
10 simpr 110 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
11 simpl 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
1210, 11subcld 8383 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
13 brelrng 4909 . . . . . . . . . 10 (((𝑧𝐴) ∈ ℂ ∧ 𝑢 ∈ V ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
147, 13mp3an2 1338 . . . . . . . . 9 (((𝑧𝐴) ∈ ℂ ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1512, 14sylan 283 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑧𝐴)𝐹𝑢) → 𝑢 ∈ ran 𝐹)
1615ex 115 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑧𝐴)𝐹𝑢𝑢 ∈ ran 𝐹))
179, 16biimtrid 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑢 ∈ {𝑤 ∣ (𝑧𝐴)𝐹𝑤} → 𝑢 ∈ ran 𝐹))
1817ssrdv 3199 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
1918adantll 476 . . . 4 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ⊆ ran 𝐹)
206, 19ssexd 4184 . . 3 (((𝐹𝑉𝐴 ∈ ℂ) ∧ 𝑧 ∈ ℂ) → {𝑤 ∣ (𝑧𝐴)𝐹𝑤} ∈ V)
214, 20opabex3d 6206 . 2 ((𝐹𝑉𝐴 ∈ ℂ) → {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)} ∈ V)
222, 21eqeltrd 2282 1 ((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  {cab 2191  Vcvv 2772  wss 3166   class class class wbr 4044  {copab 4104  ran crn 4676  (class class class)co 5944  cc 7923  cmin 8243   shift cshi 11125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-shft 11126
This theorem is referenced by:  2shfti  11142  climshftlemg  11613  climshft  11615  climshft2  11617  eftlub  12001
  Copyright terms: Public domain W3C validator