ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec GIF version

Theorem mulcanenq0ec 7628
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )

Proof of Theorem mulcanenq0ec
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7618 . . 3 ~Q0 Er (ω × N)
21a1i 9 . 2 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ~Q0 Er (ω × N))
3 pinn 7492 . . . . 5 (𝐴N𝐴 ∈ ω)
433ad2ant1 1042 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐴 ∈ ω)
5 simp2 1022 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐵 ∈ ω)
6 pinn 7492 . . . . 5 (𝐶N𝐶 ∈ ω)
763ad2ant3 1044 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐶 ∈ ω)
8 nnmcom 6633 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
98adantl 277 . . . 4 (((𝐴N𝐵 ∈ ω ∧ 𝐶N) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
10 nnmass 6631 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
1110adantl 277 . . . 4 (((𝐴N𝐵 ∈ ω ∧ 𝐶N) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
124, 5, 7, 9, 11caov32d 6185 . . 3 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵))
13 nnmcl 6625 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
143, 13sylan 283 . . . . . . 7 ((𝐴N𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
15 mulpiord 7500 . . . . . . . 8 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
16 mulclpi 7511 . . . . . . . 8 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
1715, 16eqeltrrd 2307 . . . . . . 7 ((𝐴N𝐶N) → (𝐴 ·o 𝐶) ∈ N)
1814, 17anim12i 338 . . . . . 6 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N))
19 simpr 110 . . . . . . 7 (((𝐴N𝐴N) ∧ (𝐵 ∈ ω ∧ 𝐶N)) → (𝐵 ∈ ω ∧ 𝐶N))
2019an4s 590 . . . . . 6 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → (𝐵 ∈ ω ∧ 𝐶N))
2118, 20jca 306 . . . . 5 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)))
22213impdi 1327 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)))
23 enq0breq 7619 . . . 4 ((((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)) → (⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩ ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵)))
2422, 23syl 14 . . 3 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → (⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩ ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵)))
2512, 24mpbird 167 . 2 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩)
262, 25erthi 6726 1 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4082  ωcom 4681   × cxp 4716  (class class class)co 6000   ·o comu 6558   Er wer 6675  [cec 6676  Ncnpi 7455   ·N cmi 7457   ~Q0 ceq0 7469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-ni 7487  df-mi 7489  df-enq0 7607
This theorem is referenced by:  nnanq0  7641  distrnq0  7642
  Copyright terms: Public domain W3C validator