ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec GIF version

Theorem mulcanenq0ec 7473
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )

Proof of Theorem mulcanenq0ec
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7463 . . 3 ~Q0 Er (ω × N)
21a1i 9 . 2 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ~Q0 Er (ω × N))
3 pinn 7337 . . . . 5 (𝐴N𝐴 ∈ ω)
433ad2ant1 1020 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐴 ∈ ω)
5 simp2 1000 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐵 ∈ ω)
6 pinn 7337 . . . . 5 (𝐶N𝐶 ∈ ω)
763ad2ant3 1022 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐶 ∈ ω)
8 nnmcom 6513 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
98adantl 277 . . . 4 (((𝐴N𝐵 ∈ ω ∧ 𝐶N) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
10 nnmass 6511 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
1110adantl 277 . . . 4 (((𝐴N𝐵 ∈ ω ∧ 𝐶N) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
124, 5, 7, 9, 11caov32d 6076 . . 3 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵))
13 nnmcl 6505 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
143, 13sylan 283 . . . . . . 7 ((𝐴N𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
15 mulpiord 7345 . . . . . . . 8 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
16 mulclpi 7356 . . . . . . . 8 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
1715, 16eqeltrrd 2267 . . . . . . 7 ((𝐴N𝐶N) → (𝐴 ·o 𝐶) ∈ N)
1814, 17anim12i 338 . . . . . 6 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N))
19 simpr 110 . . . . . . 7 (((𝐴N𝐴N) ∧ (𝐵 ∈ ω ∧ 𝐶N)) → (𝐵 ∈ ω ∧ 𝐶N))
2019an4s 588 . . . . . 6 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → (𝐵 ∈ ω ∧ 𝐶N))
2118, 20jca 306 . . . . 5 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)))
22213impdi 1304 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)))
23 enq0breq 7464 . . . 4 ((((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)) → (⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩ ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵)))
2422, 23syl 14 . . 3 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → (⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩ ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵)))
2512, 24mpbird 167 . 2 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩)
262, 25erthi 6606 1 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  cop 3610   class class class wbr 4018  ωcom 4607   × cxp 4642  (class class class)co 5895   ·o comu 6438   Er wer 6555  [cec 6556  Ncnpi 7300   ·N cmi 7302   ~Q0 ceq0 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-ni 7332  df-mi 7334  df-enq0 7452
This theorem is referenced by:  nnanq0  7486  distrnq0  7487
  Copyright terms: Public domain W3C validator