ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanenq0ec GIF version

Theorem mulcanenq0ec 7540
Description: Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
mulcanenq0ec ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )

Proof of Theorem mulcanenq0ec
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7530 . . 3 ~Q0 Er (ω × N)
21a1i 9 . 2 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ~Q0 Er (ω × N))
3 pinn 7404 . . . . 5 (𝐴N𝐴 ∈ ω)
433ad2ant1 1020 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐴 ∈ ω)
5 simp2 1000 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐵 ∈ ω)
6 pinn 7404 . . . . 5 (𝐶N𝐶 ∈ ω)
763ad2ant3 1022 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → 𝐶 ∈ ω)
8 nnmcom 6565 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
98adantl 277 . . . 4 (((𝐴N𝐵 ∈ ω ∧ 𝐶N) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
10 nnmass 6563 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
1110adantl 277 . . . 4 (((𝐴N𝐵 ∈ ω ∧ 𝐶N) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
124, 5, 7, 9, 11caov32d 6117 . . 3 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵))
13 nnmcl 6557 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
143, 13sylan 283 . . . . . . 7 ((𝐴N𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
15 mulpiord 7412 . . . . . . . 8 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) = (𝐴 ·o 𝐶))
16 mulclpi 7423 . . . . . . . 8 ((𝐴N𝐶N) → (𝐴 ·N 𝐶) ∈ N)
1715, 16eqeltrrd 2282 . . . . . . 7 ((𝐴N𝐶N) → (𝐴 ·o 𝐶) ∈ N)
1814, 17anim12i 338 . . . . . 6 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N))
19 simpr 110 . . . . . . 7 (((𝐴N𝐴N) ∧ (𝐵 ∈ ω ∧ 𝐶N)) → (𝐵 ∈ ω ∧ 𝐶N))
2019an4s 588 . . . . . 6 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → (𝐵 ∈ ω ∧ 𝐶N))
2118, 20jca 306 . . . . 5 (((𝐴N𝐵 ∈ ω) ∧ (𝐴N𝐶N)) → (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)))
22213impdi 1305 . . . 4 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → (((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)))
23 enq0breq 7531 . . . 4 ((((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐶) ∈ N) ∧ (𝐵 ∈ ω ∧ 𝐶N)) → (⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩ ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵)))
2422, 23syl 14 . . 3 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → (⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩ ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐶) ·o 𝐵)))
2512, 24mpbird 167 . 2 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → ⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩ ~Q0𝐵, 𝐶⟩)
262, 25erthi 6658 1 ((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  cop 3635   class class class wbr 4043  ωcom 4636   × cxp 4671  (class class class)co 5934   ·o comu 6490   Er wer 6607  [cec 6608  Ncnpi 7367   ·N cmi 7369   ~Q0 ceq0 7381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-ni 7399  df-mi 7401  df-enq0 7519
This theorem is referenced by:  nnanq0  7553  distrnq0  7554
  Copyright terms: Public domain W3C validator