HomeHome Intuitionistic Logic Explorer
Theorem List (p. 77 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7601-7700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltexprlemm 7601* Our constructed difference is inhabited. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
 
Theoremltexprlemopl 7602* The lower cut of our constructed difference is open. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
 
Theoremltexprlemlol 7603* The lower cut of our constructed difference is lower. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
 
Theoremltexprlemopu 7604* The upper cut of our constructed difference is open. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
 
Theoremltexprlemupu 7605* The upper cut of our constructed difference is upper. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))
 
Theoremltexprlemrnd 7606* Our constructed difference is rounded. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∀𝑞Q (𝑞 ∈ (1st𝐶) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐶) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))))
 
Theoremltexprlemdisj 7607* Our constructed difference is disjoint. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
 
Theoremltexprlemloc 7608* Our constructed difference is located. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
 
Theoremltexprlempr 7609* Our constructed difference is a positive real. Lemma for ltexpri 7614. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵𝐶P)
 
Theoremltexprlemfl 7610* Lemma for ltexpri 7614. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
 
Theoremltexprlemrl 7611* Lemma for ltexpri 7614. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P 𝐶)))
 
Theoremltexprlemfu 7612* Lemma for ltexpri 7614. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
 
Theoremltexprlemru 7613* Lemma for ltexpri 7614. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
 
Theoremltexpri 7614* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
(𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
 
Theoremaddcanprleml 7615 Lemma for addcanprg 7617. (Contributed by Jim Kingdon, 25-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
 
Theoremaddcanprlemu 7616 Lemma for addcanprg 7617. (Contributed by Jim Kingdon, 25-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
 
Theoremaddcanprg 7617 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
 
Theoremlteupri 7618* The difference from ltexpri 7614 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
 
Theoremltaprlem 7619 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
(𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
 
Theoremltaprg 7620 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
 
Theoremprplnqu 7621* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝑋P)    &   (𝜑𝑄Q)    &   (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))       (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
 
Theoremaddextpr 7622 Strong extensionality of addition (ordering version). This is similar to addext 8569 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
 
Theoremrecexprlemell 7623* Membership in the lower cut of 𝐵. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
 
Theoremrecexprlemelu 7624* Membership in the upper cut of 𝐵. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
 
Theoremrecexprlemm 7625* 𝐵 is inhabited. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
 
Theoremrecexprlemopl 7626* The lower cut of 𝐵 is open. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
 
Theoremrecexprlemlol 7627* The lower cut of 𝐵 is lower. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
 
Theoremrecexprlemopu 7628* The upper cut of 𝐵 is open. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑟Q𝑟 ∈ (2nd𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))
 
Theoremrecexprlemupu 7629* The upper cut of 𝐵 is upper. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐵)))
 
Theoremrecexprlemrnd 7630* 𝐵 is rounded. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∀𝑞Q (𝑞 ∈ (1st𝐵) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐵) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐵)))))
 
Theoremrecexprlemdisj 7631* 𝐵 is disjoint. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐵) ∧ 𝑞 ∈ (2nd𝐵)))
 
Theoremrecexprlemloc 7632* 𝐵 is located. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
 
Theoremrecexprlempr 7633* 𝐵 is a positive real. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P𝐵P)
 
Theoremrecexprlem1ssl 7634* The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
 
Theoremrecexprlem1ssu 7635* The upper cut of one is a subset of the upper cut of 𝐴 ·P 𝐵. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (2nd ‘1P) ⊆ (2nd ‘(𝐴 ·P 𝐵)))
 
Theoremrecexprlemss1l 7636* The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
 
Theoremrecexprlemss1u 7637* The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
 
Theoremrecexprlemex 7638* 𝐵 is the reciprocal of 𝐴. Lemma for recexpr 7639. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (𝐴 ·P 𝐵) = 1P)
 
Theoremrecexpr 7639* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
(𝐴P → ∃𝑥P (𝐴 ·P 𝑥) = 1P)
 
Theoremaptiprleml 7640 Lemma for aptipr 7642. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (1st𝐴) ⊆ (1st𝐵))
 
Theoremaptiprlemu 7641 Lemma for aptipr 7642. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))
 
Theoremaptipr 7642 Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
((𝐴P𝐵P ∧ ¬ (𝐴<P 𝐵𝐵<P 𝐴)) → 𝐴 = 𝐵)
 
Theoremltmprr 7643 Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
((𝐴P𝐵P𝐶P) → ((𝐶 ·P 𝐴)<P (𝐶 ·P 𝐵) → 𝐴<P 𝐵))
 
Theoremarchpr 7644* For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 7554. (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
 
Theoremcaucvgprlemcanl 7645* Lemma for cauappcvgprlemladdrl 7658. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
(𝜑𝐿P)    &   (𝜑𝑆Q)    &   (𝜑𝑅Q)    &   (𝜑𝑄Q)       (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
 
Theoremcauappcvgprlemm 7646* Lemma for cauappcvgpr 7663. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
 
Theoremcauappcvgprlemopl 7647* Lemma for cauappcvgpr 7663. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
 
Theoremcauappcvgprlemlol 7648* Lemma for cauappcvgpr 7663. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
Theoremcauappcvgprlemopu 7649* Lemma for cauappcvgpr 7663. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
 
Theoremcauappcvgprlemupu 7650* Lemma for cauappcvgpr 7663. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))
 
Theoremcauappcvgprlemrnd 7651* Lemma for cauappcvgpr 7663. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
 
Theoremcauappcvgprlemdisj 7652* Lemma for cauappcvgpr 7663. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
 
Theoremcauappcvgprlemloc 7653* Lemma for cauappcvgpr 7663. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
 
Theoremcauappcvgprlemcl 7654* Lemma for cauappcvgpr 7663. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑𝐿P)
 
Theoremcauappcvgprlemladdfu 7655* Lemma for cauappcvgprlemladd 7659. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
 
Theoremcauappcvgprlemladdfl 7656* Lemma for cauappcvgprlemladd 7659. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
 
Theoremcauappcvgprlemladdru 7657* Lemma for cauappcvgprlemladd 7659. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
 
Theoremcauappcvgprlemladdrl 7658* Lemma for cauappcvgprlemladd 7659. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
 
Theoremcauappcvgprlemladd 7659* Lemma for cauappcvgpr 7663. This takes 𝐿 and offsets it by the positive fraction 𝑆. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩)
 
Theoremcauappcvgprlem1 7660* Lemma for cauappcvgpr 7663. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑅Q)       (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))
 
Theoremcauappcvgprlem2 7661* Lemma for cauappcvgpr 7663. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑅Q)       (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
 
Theoremcauappcvgprlemlim 7662* Lemma for cauappcvgpr 7663. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
 
Theoremcauappcvgpr 7663* A Cauchy approximation has a limit. A Cauchy approximation, here 𝐹, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of 𝐹 is Q rather than P. We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7683 and caucvgprpr 7713 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))       (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
 
Theoremarchrecnq 7664* Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝐴Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝐴)
 
Theoremarchrecpr 7665* Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)
 
Theoremcaucvgprlemk 7666 Lemma for caucvgpr 7683. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
(𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)       (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
 
Theoremcaucvgprlemnkj 7667* Lemma for caucvgpr 7683. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       (𝜑 → ¬ ((𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q (𝐹𝐾) ∧ ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑆))
 
Theoremcaucvgprlemnbj 7668* Lemma for caucvgpr 7683. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑𝐵N)    &   (𝜑𝐽N)       (𝜑 → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1o⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q (𝐹𝐽))
 
Theoremcaucvgprlemm 7669* Lemma for caucvgpr 7683. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
 
Theoremcaucvgprlemopl 7670* Lemma for caucvgpr 7683. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
 
Theoremcaucvgprlemlol 7671* Lemma for caucvgpr 7683. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
Theoremcaucvgprlemopu 7672* Lemma for caucvgpr 7683. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
 
Theoremcaucvgprlemupu 7673* Lemma for caucvgpr 7683. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))
 
Theoremcaucvgprlemrnd 7674* Lemma for caucvgpr 7683. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
 
Theoremcaucvgprlemdisj 7675* Lemma for caucvgpr 7683. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
 
Theoremcaucvgprlemloc 7676* Lemma for caucvgpr 7683. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
 
Theoremcaucvgprlemcl 7677* Lemma for caucvgpr 7683. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑𝐿P)
 
Theoremcaucvgprlemladdfu 7678* Lemma for caucvgpr 7683. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) +Q 𝑆) <Q 𝑢})
 
Theoremcaucvgprlemladdrl 7679* Lemma for caucvgpr 7683. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
 
Theoremcaucvgprlem1 7680* Lemma for caucvgpr 7683. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)       (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
 
Theoremcaucvgprlem2 7681* Lemma for caucvgpr 7683. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)       (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
 
Theoremcaucvgprlemlim 7682* Lemma for caucvgpr 7683. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
 
Theoremcaucvgpr 7683* A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7663 and caucvgprpr 7713. Reading cauappcvgpr 7663 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))       (𝜑 → ∃𝑦P𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
 
Theoremcaucvgprprlemk 7684* Lemma for caucvgprpr 7713. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
(𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
 
Theoremcaucvgprprlemloccalc 7685* Lemma for caucvgprpr 7713. Rearranging some expressions for caucvgprprlemloc 7704. (Contributed by Jim Kingdon, 8-Feb-2021.)
(𝜑𝑆 <Q 𝑇)    &   (𝜑𝑌Q)    &   (𝜑 → (𝑆 +Q 𝑌) = 𝑇)    &   (𝜑𝑋Q)    &   (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)    &   (𝜑𝑀N)    &   (𝜑 → (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑋)       (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1o⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1o⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
 
Theoremcaucvgprprlemell 7686* Lemma for caucvgprpr 7713. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
 
Theoremcaucvgprprlemelu 7687* Lemma for caucvgprpr 7713. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
 
Theoremcaucvgprprlemcbv 7688* Lemma for caucvgprpr 7713. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))       (𝜑 → ∀𝑎N𝑏N (𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑢}⟩))))
 
Theoremcaucvgprprlemval 7689* Lemma for caucvgprpr 7713. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))       ((𝜑𝐴 <N 𝐵) → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑞}⟩)))
 
Theoremcaucvgprprlemnkltj 7690* Lemma for caucvgprpr 7713. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
Theoremcaucvgprprlemnkeqj 7691* Lemma for caucvgprpr 7713. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
Theoremcaucvgprprlemnjltk 7692* Lemma for caucvgprpr 7713. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐽 <N 𝐾) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
Theoremcaucvgprprlemnkj 7693* Lemma for caucvgprpr 7713. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       (𝜑 → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
Theoremcaucvgprprlemnbj 7694* Lemma for caucvgprpr 7713. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐵N)    &   (𝜑𝐽N)       (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1o⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
 
Theoremcaucvgprprlemml 7695* Lemma for caucvgprpr 7713. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
 
Theoremcaucvgprprlemmu 7696* Lemma for caucvgprpr 7713. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
 
Theoremcaucvgprprlemm 7697* Lemma for caucvgprpr 7713. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑡Q 𝑡 ∈ (2nd𝐿)))
 
Theoremcaucvgprprlemopl 7698* Lemma for caucvgprpr 7713. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
 
Theoremcaucvgprprlemlol 7699* Lemma for caucvgprpr 7713. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
Theoremcaucvgprprlemopu 7700* Lemma for caucvgprpr 7713. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >