Theorem List for Intuitionistic Logic Explorer - 7601-7700 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | dmmp 7601 |
Domain of multiplication on positive reals. (Contributed by NM,
18-Nov-1995.)
|
⊢ dom ·P =
(P × P) |
|
Theorem | nqprm 7602* |
A cut produced from a rational is inhabited. Lemma for nqprlu 7607.
(Contributed by Jim Kingdon, 8-Dec-2019.)
|
⊢ (𝐴 ∈ Q →
(∃𝑞 ∈
Q 𝑞 ∈
{𝑥 ∣ 𝑥 <Q
𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
|
Theorem | nqprrnd 7603* |
A cut produced from a rational is rounded. Lemma for nqprlu 7607.
(Contributed by Jim Kingdon, 8-Dec-2019.)
|
⊢ (𝐴 ∈ Q →
(∀𝑞 ∈
Q (𝑞 ∈
{𝑥 ∣ 𝑥 <Q
𝐴} ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ {𝑥 ∣ 𝑥 <Q 𝐴})) ∧ ∀𝑟 ∈ Q (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})))) |
|
Theorem | nqprdisj 7604* |
A cut produced from a rational is disjoint. Lemma for nqprlu 7607.
(Contributed by Jim Kingdon, 8-Dec-2019.)
|
⊢ (𝐴 ∈ Q →
∀𝑞 ∈
Q ¬ (𝑞
∈ {𝑥 ∣ 𝑥 <Q
𝐴} ∧ 𝑞 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
|
Theorem | nqprloc 7605* |
A cut produced from a rational is located. Lemma for nqprlu 7607.
(Contributed by Jim Kingdon, 8-Dec-2019.)
|
⊢ (𝐴 ∈ Q →
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}))) |
|
Theorem | nqprxx 7606* |
The canonical embedding of the rationals into the reals, expressed with
the same variable for the lower and upper cuts. (Contributed by Jim
Kingdon, 8-Dec-2019.)
|
⊢ (𝐴 ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 𝐴}, {𝑥 ∣ 𝐴 <Q 𝑥}〉 ∈
P) |
|
Theorem | nqprlu 7607* |
The canonical embedding of the rationals into the reals. (Contributed
by Jim Kingdon, 24-Jun-2020.)
|
⊢ (𝐴 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈
P) |
|
Theorem | recnnpr 7608* |
The reciprocal of a positive integer, as a positive real. (Contributed
by Jim Kingdon, 27-Feb-2021.)
|
⊢ (𝐴 ∈ N → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) |
|
Theorem | ltnqex 7609 |
The class of rationals less than a given rational is a set. (Contributed
by Jim Kingdon, 13-Dec-2019.)
|
⊢ {𝑥 ∣ 𝑥 <Q 𝐴} ∈ V |
|
Theorem | gtnqex 7610 |
The class of rationals greater than a given rational is a set.
(Contributed by Jim Kingdon, 13-Dec-2019.)
|
⊢ {𝑥 ∣ 𝐴 <Q 𝑥} ∈ V |
|
Theorem | nqprl 7611* |
Comparing a fraction to a real can be done by whether it is an element
of the lower cut, or by <P. (Contributed by Jim Kingdon,
8-Jul-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ P) →
(𝐴 ∈ (1st
‘𝐵) ↔
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵)) |
|
Theorem | nqpru 7612* |
Comparing a fraction to a real can be done by whether it is an element
of the upper cut, or by <P. (Contributed by Jim Kingdon,
29-Nov-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ P) →
(𝐴 ∈ (2nd
‘𝐵) ↔ 𝐵<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
|
Theorem | nnprlu 7613* |
The canonical embedding of positive integers into the positive reals.
(Contributed by Jim Kingdon, 23-Apr-2020.)
|
⊢ (𝐴 ∈ N → 〈{𝑙 ∣ 𝑙 <Q [〈𝐴, 1o〉]
~Q }, {𝑢 ∣ [〈𝐴, 1o〉]
~Q <Q 𝑢}〉 ∈
P) |
|
Theorem | 1pr 7614 |
The positive real number 'one'. (Contributed by NM, 13-Mar-1996.)
(Revised by Mario Carneiro, 12-Jun-2013.)
|
⊢ 1P ∈
P |
|
Theorem | 1prl 7615 |
The lower cut of the positive real number 'one'. (Contributed by Jim
Kingdon, 28-Dec-2019.)
|
⊢ (1st
‘1P) = {𝑥 ∣ 𝑥 <Q
1Q} |
|
Theorem | 1pru 7616 |
The upper cut of the positive real number 'one'. (Contributed by Jim
Kingdon, 28-Dec-2019.)
|
⊢ (2nd
‘1P) = {𝑥 ∣ 1Q
<Q 𝑥} |
|
Theorem | addnqprlemrl 7617* |
Lemma for addnqpr 7621. The reverse subset relationship for the
lower
cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(1st ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ⊆
(1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵)
<Q 𝑢}〉)) |
|
Theorem | addnqprlemru 7618* |
Lemma for addnqpr 7621. The reverse subset relationship for the
upper
cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(2nd ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ⊆
(2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵)
<Q 𝑢}〉)) |
|
Theorem | addnqprlemfl 7619* |
Lemma for addnqpr 7621. The forward subset relationship for the
lower
cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵)
<Q 𝑢}〉) ⊆ (1st
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
|
Theorem | addnqprlemfu 7620* |
Lemma for addnqpr 7621. The forward subset relationship for the
upper
cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵)
<Q 𝑢}〉) ⊆ (2nd
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
|
Theorem | addnqpr 7621* |
Addition of fractions embedded into positive reals. One can either add
the fractions as fractions, or embed them into positive reals and add
them as positive reals, and get the same result. (Contributed by Jim
Kingdon, 19-Aug-2020.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
〈{𝑙 ∣ 𝑙 <Q
(𝐴
+Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵)
<Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) |
|
Theorem | addnqpr1 7622* |
Addition of one to a fraction embedded into a positive real. One can
either add the fraction one to the fraction, or the positive real one to
the positive real, and get the same result. Special case of addnqpr 7621.
(Contributed by Jim Kingdon, 26-Apr-2020.)
|
⊢ (𝐴 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q (𝐴 +Q
1Q)}, {𝑢 ∣ (𝐴 +Q
1Q) <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
+P 1P)) |
|
Theorem | appdivnq 7623* |
Approximate division for positive rationals. Proposition 12.7 of
[BauerTaylor], p. 55 (a special case
where 𝐴 and 𝐵 are positive,
as well as 𝐶). Our proof is simpler than the one
in BauerTaylor
because we have reciprocals. (Contributed by Jim Kingdon,
8-Dec-2019.)
|
⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) →
∃𝑚 ∈
Q (𝐴
<Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶)
<Q 𝐵)) |
|
Theorem | appdiv0nq 7624* |
Approximate division for positive rationals. This can be thought of as
a variation of appdivnq 7623 in which 𝐴 is zero, although it can be
stated and proved in terms of positive rationals alone, without zero as
such. (Contributed by Jim Kingdon, 9-Dec-2019.)
|
⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) →
∃𝑚 ∈
Q (𝑚
·Q 𝐶) <Q 𝐵) |
|
Theorem | prmuloclemcalc 7625 |
Calculations for prmuloc 7626. (Contributed by Jim Kingdon,
9-Dec-2019.)
|
⊢ (𝜑 → 𝑅 <Q 𝑈) & ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q
𝑃)) & ⊢ (𝜑 → (𝐴 +Q 𝑋) = 𝐵)
& ⊢ (𝜑 → (𝑃 ·Q 𝐵)
<Q (𝑅 ·Q 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Q) & ⊢ (𝜑 → 𝐵 ∈ Q) & ⊢ (𝜑 → 𝐷 ∈ Q) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → 𝑋 ∈
Q) ⇒ ⊢ (𝜑 → (𝑈 ·Q 𝐴)
<Q (𝐷 ·Q 𝐵)) |
|
Theorem | prmuloc 7626* |
Positive reals are multiplicatively located. Lemma 12.8 of
[BauerTaylor], p. 56. (Contributed
by Jim Kingdon, 8-Dec-2019.)
|
⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 <Q
𝐵) → ∃𝑑 ∈ Q
∃𝑢 ∈
Q (𝑑 ∈
𝐿 ∧ 𝑢 ∈ 𝑈 ∧ (𝑢 ·Q 𝐴)
<Q (𝑑 ·Q 𝐵))) |
|
Theorem | prmuloc2 7627* |
Positive reals are multiplicatively located. This is a variation of
prmuloc 7626 which only constructs one (named) point and
is therefore often
easier to work with. It states that given a ratio 𝐵, there
are
elements of the lower and upper cut which have exactly that ratio
between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
|
⊢ ((〈𝐿, 𝑈〉 ∈ P ∧
1Q <Q 𝐵) → ∃𝑥 ∈ 𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈) |
|
Theorem | mulnqprl 7628 |
Lemma to prove downward closure in positive real multiplication.
(Contributed by Jim Kingdon, 10-Dec-2019.)
|
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (1st
‘𝐵))) ∧ 𝑋 ∈ Q) →
(𝑋
<Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴
·P 𝐵)))) |
|
Theorem | mulnqpru 7629 |
Lemma to prove upward closure in positive real multiplication.
(Contributed by Jim Kingdon, 10-Dec-2019.)
|
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
·Q 𝐻) <Q 𝑋 → 𝑋 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
|
Theorem | mullocprlem 7630 |
Calculations for mullocpr 7631. (Contributed by Jim Kingdon,
10-Dec-2019.)
|
⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐵 ∈
P))
& ⊢ (𝜑 → (𝑈 ·Q 𝑄)
<Q (𝐸 ·Q (𝐷
·Q 𝑈))) & ⊢ (𝜑 → (𝐸 ·Q (𝐷
·Q 𝑈)) <Q (𝑇
·Q (𝐷 ·Q 𝑈))) & ⊢ (𝜑 → (𝑇 ·Q (𝐷
·Q 𝑈)) <Q (𝐷
·Q 𝑅)) & ⊢ (𝜑 → (𝑄 ∈ Q ∧ 𝑅 ∈
Q))
& ⊢ (𝜑 → (𝐷 ∈ Q ∧ 𝑈 ∈
Q))
& ⊢ (𝜑 → (𝐷 ∈ (1st ‘𝐴) ∧ 𝑈 ∈ (2nd ‘𝐴))) & ⊢ (𝜑 → (𝐸 ∈ Q ∧ 𝑇 ∈
Q)) ⇒ ⊢ (𝜑 → (𝑄 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴
·P 𝐵)))) |
|
Theorem | mullocpr 7631* |
Locatedness of multiplication on positive reals. Lemma 12.9 in
[BauerTaylor], p. 56 (but where both
𝐴
and 𝐵 are positive, not
just 𝐴). (Contributed by Jim Kingdon,
8-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) →
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴
·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴
·P 𝐵))))) |
|
Theorem | mulclpr 7632 |
Closure of multiplication on positive reals. First statement of
Proposition 9-3.7 of [Gleason] p. 124.
(Contributed by NM,
13-Mar-1996.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) →
(𝐴
·P 𝐵) ∈ P) |
|
Theorem | mulnqprlemrl 7633* |
Lemma for mulnqpr 7637. The reverse subset relationship for the
lower
cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(1st ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
·P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ⊆
(1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴
·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵)
<Q 𝑢}〉)) |
|
Theorem | mulnqprlemru 7634* |
Lemma for mulnqpr 7637. The reverse subset relationship for the
upper
cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(2nd ‘(〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
·P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ⊆
(2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴
·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵)
<Q 𝑢}〉)) |
|
Theorem | mulnqprlemfl 7635* |
Lemma for mulnqpr 7637. The forward subset relationship for the
lower
cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(1st ‘〈{𝑙 ∣ 𝑙 <Q (𝐴
·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵)
<Q 𝑢}〉) ⊆ (1st
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
·P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
|
Theorem | mulnqprlemfu 7636* |
Lemma for mulnqpr 7637. The forward subset relationship for the
upper
cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(2nd ‘〈{𝑙 ∣ 𝑙 <Q (𝐴
·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵)
<Q 𝑢}〉) ⊆ (2nd
‘(〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
·P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉))) |
|
Theorem | mulnqpr 7637* |
Multiplication of fractions embedded into positive reals. One can
either multiply the fractions as fractions, or embed them into positive
reals and multiply them as positive reals, and get the same result.
(Contributed by Jim Kingdon, 18-Jul-2021.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
〈{𝑙 ∣ 𝑙 <Q
(𝐴
·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵)
<Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉
·P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) |
|
Theorem | addcomprg 7638 |
Addition of positive reals is commutative. Proposition 9-3.5(ii) of
[Gleason] p. 123. (Contributed by Jim
Kingdon, 11-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) →
(𝐴
+P 𝐵) = (𝐵 +P 𝐴)) |
|
Theorem | addassprg 7639 |
Addition of positive reals is associative. Proposition 9-3.5(i) of
[Gleason] p. 123. (Contributed by Jim
Kingdon, 11-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ ((𝐴
+P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P
𝐶))) |
|
Theorem | mulcomprg 7640 |
Multiplication of positive reals is commutative. Proposition 9-3.7(ii)
of [Gleason] p. 124. (Contributed by
Jim Kingdon, 11-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) →
(𝐴
·P 𝐵) = (𝐵 ·P 𝐴)) |
|
Theorem | mulassprg 7641 |
Multiplication of positive reals is associative. Proposition 9-3.7(i)
of [Gleason] p. 124. (Contributed by
Jim Kingdon, 11-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ ((𝐴
·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵
·P 𝐶))) |
|
Theorem | distrlem1prl 7642 |
Lemma for distributive law for positive reals. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ (1st ‘(𝐴 ·P (𝐵 +P
𝐶))) ⊆
(1st ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))) |
|
Theorem | distrlem1pru 7643 |
Lemma for distributive law for positive reals. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ (2nd ‘(𝐴 ·P (𝐵 +P
𝐶))) ⊆
(2nd ‘((𝐴
·P 𝐵) +P (𝐴
·P 𝐶)))) |
|
Theorem | distrlem4prl 7644* |
Lemma for distributive law for positive reals. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
∧ ((𝑥 ∈
(1st ‘𝐴)
∧ 𝑦 ∈
(1st ‘𝐵))
∧ (𝑓 ∈
(1st ‘𝐴)
∧ 𝑧 ∈
(1st ‘𝐶)))) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) |
|
Theorem | distrlem4pru 7645* |
Lemma for distributive law for positive reals. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
∧ ((𝑥 ∈
(2nd ‘𝐴)
∧ 𝑦 ∈
(2nd ‘𝐵))
∧ (𝑓 ∈
(2nd ‘𝐴)
∧ 𝑧 ∈
(2nd ‘𝐶)))) → ((𝑥 ·Q 𝑦) +Q
(𝑓
·Q 𝑧)) ∈ (2nd ‘(𝐴
·P (𝐵 +P 𝐶)))) |
|
Theorem | distrlem5prl 7646 |
Lemma for distributive law for positive reals. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ (1st ‘((𝐴 ·P 𝐵) +P
(𝐴
·P 𝐶))) ⊆ (1st ‘(𝐴
·P (𝐵 +P 𝐶)))) |
|
Theorem | distrlem5pru 7647 |
Lemma for distributive law for positive reals. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ (2nd ‘((𝐴 ·P 𝐵) +P
(𝐴
·P 𝐶))) ⊆ (2nd ‘(𝐴
·P (𝐵 +P 𝐶)))) |
|
Theorem | distrprg 7648 |
Multiplication of positive reals is distributive. Proposition 9-3.7(iii)
of [Gleason] p. 124. (Contributed by Jim
Kingdon, 12-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝐴
·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P
(𝐴
·P 𝐶))) |
|
Theorem | ltprordil 7649 |
If a positive real is less than a second positive real, its lower cut is
a subset of the second's lower cut. (Contributed by Jim Kingdon,
23-Dec-2019.)
|
⊢ (𝐴<P 𝐵 → (1st
‘𝐴) ⊆
(1st ‘𝐵)) |
|
Theorem | 1idprl 7650 |
Lemma for 1idpr 7652. (Contributed by Jim Kingdon, 13-Dec-2019.)
|
⊢ (𝐴 ∈ P →
(1st ‘(𝐴
·P 1P)) =
(1st ‘𝐴)) |
|
Theorem | 1idpru 7651 |
Lemma for 1idpr 7652. (Contributed by Jim Kingdon, 13-Dec-2019.)
|
⊢ (𝐴 ∈ P →
(2nd ‘(𝐴
·P 1P)) =
(2nd ‘𝐴)) |
|
Theorem | 1idpr 7652 |
1 is an identity element for positive real multiplication. Theorem
9-3.7(iv) of [Gleason] p. 124.
(Contributed by NM, 2-Apr-1996.)
|
⊢ (𝐴 ∈ P → (𝐴
·P 1P) = 𝐴) |
|
Theorem | ltnqpr 7653* |
We can order fractions via <Q or <P. (Contributed by Jim
Kingdon, 19-Jun-2021.)
|
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) →
(𝐴
<Q 𝐵 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) |
|
Theorem | ltnqpri 7654* |
We can order fractions via <Q or <P. (Contributed by Jim
Kingdon, 8-Jan-2021.)
|
⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
|
Theorem | ltpopr 7655 |
Positive real 'less than' is a partial ordering. Remark ("< is
transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p.
(varies). Lemma for ltsopr 7656. (Contributed by Jim Kingdon,
15-Dec-2019.)
|
⊢ <P Po
P |
|
Theorem | ltsopr 7656 |
Positive real 'less than' is a weak linear order (in the sense of
df-iso 4328). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed
by Jim Kingdon, 16-Dec-2019.)
|
⊢ <P Or
P |
|
Theorem | ltaddpr 7657 |
The sum of two positive reals is greater than one of them. Proposition
9-3.5(iii) of [Gleason] p. 123.
(Contributed by NM, 26-Mar-1996.)
(Revised by Mario Carneiro, 12-Jun-2013.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) →
𝐴<P (𝐴 +P
𝐵)) |
|
Theorem | ltexprlemell 7658* |
Element in lower cut of the constructed difference. Lemma for
ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝑞 ∈ (1st ‘𝐶) ↔ (𝑞 ∈ Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) |
|
Theorem | ltexprlemelu 7659* |
Element in upper cut of the constructed difference. Lemma for
ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝑟 ∈ (2nd ‘𝐶) ↔ (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) |
|
Theorem | ltexprlemm 7660* |
Our constructed difference is inhabited. Lemma for ltexpri 7673.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐶) ∧
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐶))) |
|
Theorem | ltexprlemopl 7661* |
The lower cut of our constructed difference is open. Lemma for
ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st
‘𝐶)) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) |
|
Theorem | ltexprlemlol 7662* |
The lower cut of our constructed difference is lower. Lemma for
ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q) →
(∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)) → 𝑞 ∈ (1st ‘𝐶))) |
|
Theorem | ltexprlemopu 7663* |
The upper cut of our constructed difference is open. Lemma for
ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q ∧ 𝑟 ∈ (2nd
‘𝐶)) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))) |
|
Theorem | ltexprlemupu 7664* |
The upper cut of our constructed difference is upper. Lemma for
ltexpri 7673. (Contributed by Jim Kingdon, 21-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q) →
(∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)) → 𝑟 ∈ (2nd ‘𝐶))) |
|
Theorem | ltexprlemrnd 7665* |
Our constructed difference is rounded. Lemma for ltexpri 7673.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (∀𝑞 ∈ Q (𝑞 ∈ (1st
‘𝐶) ↔
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐶) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))))) |
|
Theorem | ltexprlemdisj 7666* |
Our constructed difference is disjoint. Lemma for ltexpri 7673.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q ¬
(𝑞 ∈ (1st
‘𝐶) ∧ 𝑞 ∈ (2nd
‘𝐶))) |
|
Theorem | ltexprlemloc 7667* |
Our constructed difference is located. Lemma for ltexpri 7673.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q
∀𝑟 ∈
Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐶) ∨ 𝑟 ∈ (2nd ‘𝐶)))) |
|
Theorem | ltexprlempr 7668* |
Our constructed difference is a positive real. Lemma for ltexpri 7673.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → 𝐶 ∈ P) |
|
Theorem | ltexprlemfl 7669* |
Lemma for ltexpri 7673. One direction of our result for lower cuts.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (1st
‘(𝐴
+P 𝐶)) ⊆ (1st ‘𝐵)) |
|
Theorem | ltexprlemrl 7670* |
Lemma for ltexpri 7673. Reverse direction of our result for lower
cuts.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (1st
‘𝐵) ⊆
(1st ‘(𝐴
+P 𝐶))) |
|
Theorem | ltexprlemfu 7671* |
Lemma for ltexpri 7673. One direction of our result for upper cuts.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (2nd
‘(𝐴
+P 𝐶)) ⊆ (2nd ‘𝐵)) |
|
Theorem | ltexprlemru 7672* |
Lemma for ltexpri 7673. One direction of our result for upper cuts.
(Contributed by Jim Kingdon, 17-Dec-2019.)
|
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑥) ∈ (2nd
‘𝐵))}〉 ⇒ ⊢ (𝐴<P 𝐵 → (2nd
‘𝐵) ⊆
(2nd ‘(𝐴
+P 𝐶))) |
|
Theorem | ltexpri 7673* |
Proposition 9-3.5(iv) of [Gleason] p. 123.
(Contributed by NM,
13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
|
⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P
𝑥) = 𝐵) |
|
Theorem | addcanprleml 7674 |
Lemma for addcanprg 7676. (Contributed by Jim Kingdon, 25-Dec-2019.)
|
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) → (1st
‘𝐵) ⊆
(1st ‘𝐶)) |
|
Theorem | addcanprlemu 7675 |
Lemma for addcanprg 7676. (Contributed by Jim Kingdon, 25-Dec-2019.)
|
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
∧ (𝐴
+P 𝐵) = (𝐴 +P 𝐶)) → (2nd
‘𝐵) ⊆
(2nd ‘𝐶)) |
|
Theorem | addcanprg 7676 |
Addition cancellation law for positive reals. Proposition 9-3.5(vi) of
[Gleason] p. 123. (Contributed by Jim
Kingdon, 24-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ ((𝐴
+P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
|
Theorem | lteupri 7677* |
The difference from ltexpri 7673 is unique. (Contributed by Jim Kingdon,
7-Jul-2021.)
|
⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P
𝑥) = 𝐵) |
|
Theorem | ltaprlem 7678 |
Lemma for Proposition 9-3.5(v) of [Gleason] p.
123. (Contributed by NM,
8-Apr-1996.)
|
⊢ (𝐶 ∈ P → (𝐴<P
𝐵 → (𝐶 +P
𝐴)<P (𝐶 +P
𝐵))) |
|
Theorem | ltaprg 7679 |
Ordering property of addition. Proposition 9-3.5(v) of [Gleason]
p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P
(𝐶
+P 𝐵))) |
|
Theorem | prplnqu 7680* |
Membership in the upper cut of a sum of a positive real and a fraction.
(Contributed by Jim Kingdon, 16-Jun-2021.)
|
⊢ (𝜑 → 𝑋 ∈ P) & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝐴 ∈ (2nd ‘(𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |
|
Theorem | addextpr 7681 |
Strong extensionality of addition (ordering version). This is similar
to addext 8629 but for positive reals and based on less-than
rather than
apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
|
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P)) → ((𝐴 +P 𝐵)<P
(𝐶
+P 𝐷) → (𝐴<P 𝐶 ∨ 𝐵<P 𝐷))) |
|
Theorem | recexprlemell 7682* |
Membership in the lower cut of 𝐵. Lemma for recexpr 7698.
(Contributed by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐶 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
|
Theorem | recexprlemelu 7683* |
Membership in the upper cut of 𝐵. Lemma for recexpr 7698.
(Contributed by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐶 ∈ (2nd ‘𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) |
|
Theorem | recexprlemm 7684* |
𝐵
is inhabited. Lemma for recexpr 7698. (Contributed by Jim Kingdon,
27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
(∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐵)
∧ ∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵))) |
|
Theorem | recexprlemopl 7685* |
The lower cut of 𝐵 is open. Lemma for recexpr 7698. (Contributed by
Jim Kingdon, 28-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q ∧
𝑞 ∈ (1st
‘𝐵)) →
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) |
|
Theorem | recexprlemlol 7686* |
The lower cut of 𝐵 is lower. Lemma for recexpr 7698. (Contributed by
Jim Kingdon, 28-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q) →
(∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)) → 𝑞 ∈ (1st ‘𝐵))) |
|
Theorem | recexprlemopu 7687* |
The upper cut of 𝐵 is open. Lemma for recexpr 7698. (Contributed by
Jim Kingdon, 28-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q ∧
𝑟 ∈ (2nd
‘𝐵)) →
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))) |
|
Theorem | recexprlemupu 7688* |
The upper cut of 𝐵 is upper. Lemma for recexpr 7698. (Contributed by
Jim Kingdon, 28-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ ((𝐴 ∈ P ∧ 𝑟 ∈ Q) →
(∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐵))) |
|
Theorem | recexprlemrnd 7689* |
𝐵
is rounded. Lemma for recexpr 7698. (Contributed by Jim Kingdon,
27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
(∀𝑞 ∈
Q (𝑞 ∈
(1st ‘𝐵)
↔ ∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐵))))) |
|
Theorem | recexprlemdisj 7690* |
𝐵
is disjoint. Lemma for recexpr 7698. (Contributed by Jim Kingdon,
27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
∀𝑞 ∈
Q ¬ (𝑞
∈ (1st ‘𝐵) ∧ 𝑞 ∈ (2nd ‘𝐵))) |
|
Theorem | recexprlemloc 7691* |
𝐵
is located. Lemma for recexpr 7698. (Contributed by Jim Kingdon,
27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))) |
|
Theorem | recexprlempr 7692* |
𝐵
is a positive real. Lemma for recexpr 7698. (Contributed by Jim
Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → 𝐵 ∈
P) |
|
Theorem | recexprlem1ssl 7693* |
The lower cut of one is a subset of the lower cut of 𝐴
·P 𝐵.
Lemma for recexpr 7698. (Contributed by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
(1st ‘1P) ⊆ (1st
‘(𝐴
·P 𝐵))) |
|
Theorem | recexprlem1ssu 7694* |
The upper cut of one is a subset of the upper cut of 𝐴
·P 𝐵.
Lemma for recexpr 7698. (Contributed by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
(2nd ‘1P) ⊆ (2nd
‘(𝐴
·P 𝐵))) |
|
Theorem | recexprlemss1l 7695* |
The lower cut of 𝐴 ·P 𝐵 is a subset of the lower
cut of one. Lemma
for recexpr 7698. (Contributed by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
(1st ‘(𝐴
·P 𝐵)) ⊆ (1st
‘1P)) |
|
Theorem | recexprlemss1u 7696* |
The upper cut of 𝐴 ·P 𝐵 is a subset of the upper
cut of one. Lemma
for recexpr 7698. (Contributed by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P →
(2nd ‘(𝐴
·P 𝐵)) ⊆ (2nd
‘1P)) |
|
Theorem | recexprlemex 7697* |
𝐵
is the reciprocal of 𝐴. Lemma for recexpr 7698. (Contributed
by Jim Kingdon, 27-Dec-2019.)
|
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 ⇒ ⊢ (𝐴 ∈ P → (𝐴
·P 𝐵) =
1P) |
|
Theorem | recexpr 7698* |
The reciprocal of a positive real exists. Part of Proposition 9-3.7(v)
of [Gleason] p. 124. (Contributed by
NM, 15-May-1996.) (Revised by
Mario Carneiro, 12-Jun-2013.)
|
⊢ (𝐴 ∈ P → ∃𝑥 ∈ P (𝐴
·P 𝑥) =
1P) |
|
Theorem | aptiprleml 7699 |
Lemma for aptipr 7701. (Contributed by Jim Kingdon, 28-Jan-2020.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
¬ 𝐵<P 𝐴) → (1st
‘𝐴) ⊆
(1st ‘𝐵)) |
|
Theorem | aptiprlemu 7700 |
Lemma for aptipr 7701. (Contributed by Jim Kingdon, 28-Jan-2020.)
|
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧
¬ 𝐵<P 𝐴) → (2nd
‘𝐵) ⊆
(2nd ‘𝐴)) |