| Step | Hyp | Ref
| Expression |
| 1 | | breq2 4037 |
. . . . . . 7
⊢ (𝑢 = 𝑋 → (𝑝 <Q 𝑢 ↔ 𝑝 <Q 𝑋)) |
| 2 | 1 | abbidv 2314 |
. . . . . 6
⊢ (𝑢 = 𝑋 → {𝑝 ∣ 𝑝 <Q 𝑢} = {𝑝 ∣ 𝑝 <Q 𝑋}) |
| 3 | | breq1 4036 |
. . . . . . 7
⊢ (𝑢 = 𝑋 → (𝑢 <Q 𝑞 ↔ 𝑋 <Q 𝑞)) |
| 4 | 3 | abbidv 2314 |
. . . . . 6
⊢ (𝑢 = 𝑋 → {𝑞 ∣ 𝑢 <Q 𝑞} = {𝑞 ∣ 𝑋 <Q 𝑞}) |
| 5 | 2, 4 | opeq12d 3816 |
. . . . 5
⊢ (𝑢 = 𝑋 → 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q 𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉) |
| 6 | 5 | breq2d 4045 |
. . . 4
⊢ (𝑢 = 𝑋 → (((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉 ↔ ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |
| 7 | 6 | rexbidv 2498 |
. . 3
⊢ (𝑢 = 𝑋 → (∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉 ↔ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |
| 8 | | caucvgprprlemell.lim |
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
| 9 | 8 | fveq2i 5561 |
. . . 4
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) |
| 10 | | nqex 7430 |
. . . . . 6
⊢
Q ∈ V |
| 11 | 10 | rabex 4177 |
. . . . 5
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} ∈ V |
| 12 | 10 | rabex 4177 |
. . . . 5
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} ∈
V |
| 13 | 11, 12 | op2nd 6205 |
. . . 4
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) = {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} |
| 14 | 9, 13 | eqtri 2217 |
. . 3
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} |
| 15 | 7, 14 | elrab2 2923 |
. 2
⊢ (𝑋 ∈ (2nd
‘𝐿) ↔ (𝑋 ∈ Q ∧
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |
| 16 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑟 = 𝑎 → (𝐹‘𝑟) = (𝐹‘𝑎)) |
| 17 | | opeq1 3808 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑎 → 〈𝑟, 1o〉 = 〈𝑎,
1o〉) |
| 18 | 17 | eceq1d 6628 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑎 → [〈𝑟, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) |
| 19 | 18 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑎 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) |
| 20 | 19 | breq2d 4045 |
. . . . . . . . 9
⊢ (𝑟 = 𝑎 → (𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
| 21 | 20 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑟 = 𝑎 → {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}) |
| 22 | 19 | breq1d 4043 |
. . . . . . . . 9
⊢ (𝑟 = 𝑎 →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞)) |
| 23 | 22 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑟 = 𝑎 → {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞} = {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}) |
| 24 | 21, 23 | opeq12d 3816 |
. . . . . . 7
⊢ (𝑟 = 𝑎 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉) |
| 25 | 16, 24 | oveq12d 5940 |
. . . . . 6
⊢ (𝑟 = 𝑎 → ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘𝑎) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 26 | 25 | breq1d 4043 |
. . . . 5
⊢ (𝑟 = 𝑎 → (((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉 ↔ ((𝐹‘𝑎) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |
| 27 | 26 | cbvrexv 2730 |
. . . 4
⊢
(∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉 ↔ ∃𝑎 ∈ N ((𝐹‘𝑎) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉) |
| 28 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
| 29 | | opeq1 3808 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → 〈𝑎, 1o〉 = 〈𝑏,
1o〉) |
| 30 | 29 | eceq1d 6628 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → [〈𝑎, 1o〉]
~Q = [〈𝑏, 1o〉]
~Q ) |
| 31 | 30 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝑏, 1o〉]
~Q )) |
| 32 | 31 | breq2d 4045 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
| 33 | 32 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}) |
| 34 | 31 | breq1d 4043 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 →
((*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞)) |
| 35 | 34 | abbidv 2314 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞} = {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}) |
| 36 | 33, 35 | opeq12d 3816 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉) |
| 37 | 28, 36 | oveq12d 5940 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝐹‘𝑎) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)) |
| 38 | 37 | breq1d 4043 |
. . . . 5
⊢ (𝑎 = 𝑏 → (((𝐹‘𝑎) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉 ↔ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |
| 39 | 38 | cbvrexv 2730 |
. . . 4
⊢
(∃𝑎 ∈
N ((𝐹‘𝑎) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉 ↔ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉) |
| 40 | 27, 39 | bitri 184 |
. . 3
⊢
(∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉 ↔ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉) |
| 41 | 40 | anbi2i 457 |
. 2
⊢ ((𝑋 ∈ Q ∧
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉) ↔ (𝑋 ∈ Q ∧
∃𝑏 ∈
N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |
| 42 | 15, 41 | bitri 184 |
1
⊢ (𝑋 ∈ (2nd
‘𝐿) ↔ (𝑋 ∈ Q ∧
∃𝑏 ∈
N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑋}, {𝑞 ∣ 𝑋 <Q 𝑞}〉)) |