ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemelu GIF version

Theorem caucvgprprlemelu 7869
Description: Lemma for caucvgprpr 7895. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemelu (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
Distinct variable groups:   𝐹,𝑏   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑋,𝑏,𝑝   𝑋,𝑙,𝑟,𝑝   𝑢,𝑋,𝑝   𝑋,𝑞,𝑏   𝑞,𝑙,𝑟   𝑢,𝑞
Allowed substitution hints:   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑟,𝑞,𝑝,𝑏,𝑙)

Proof of Theorem caucvgprprlemelu
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4086 . . . . . . 7 (𝑢 = 𝑋 → (𝑝 <Q 𝑢𝑝 <Q 𝑋))
21abbidv 2347 . . . . . 6 (𝑢 = 𝑋 → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q 𝑋})
3 breq1 4085 . . . . . . 7 (𝑢 = 𝑋 → (𝑢 <Q 𝑞𝑋 <Q 𝑞))
43abbidv 2347 . . . . . 6 (𝑢 = 𝑋 → {𝑞𝑢 <Q 𝑞} = {𝑞𝑋 <Q 𝑞})
52, 4opeq12d 3864 . . . . 5 (𝑢 = 𝑋 → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
65breq2d 4094 . . . 4 (𝑢 = 𝑋 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
76rexbidv 2531 . . 3 (𝑢 = 𝑋 → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
8 caucvgprprlemell.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
98fveq2i 5629 . . . 4 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
10 nqex 7546 . . . . . 6 Q ∈ V
1110rabex 4227 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
1210rabex 4227 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
1311, 12op2nd 6291 . . . 4 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
149, 13eqtri 2250 . . 3 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
157, 14elrab2 2962 . 2 (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
16 fveq2 5626 . . . . . . 7 (𝑟 = 𝑎 → (𝐹𝑟) = (𝐹𝑎))
17 opeq1 3856 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ⟨𝑟, 1o⟩ = ⟨𝑎, 1o⟩)
1817eceq1d 6714 . . . . . . . . . . 11 (𝑟 = 𝑎 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1918fveq2d 5630 . . . . . . . . . 10 (𝑟 = 𝑎 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
2019breq2d 4094 . . . . . . . . 9 (𝑟 = 𝑎 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
2120abbidv 2347 . . . . . . . 8 (𝑟 = 𝑎 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )})
2219breq1d 4092 . . . . . . . . 9 (𝑟 = 𝑎 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞))
2322abbidv 2347 . . . . . . . 8 (𝑟 = 𝑎 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞})
2421, 23opeq12d 3864 . . . . . . 7 (𝑟 = 𝑎 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩)
2516, 24oveq12d 6018 . . . . . 6 (𝑟 = 𝑎 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩))
2625breq1d 4092 . . . . 5 (𝑟 = 𝑎 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
2726cbvrexv 2766 . . . 4 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ∃𝑎N ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
28 fveq2 5626 . . . . . . 7 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
29 opeq1 3856 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ⟨𝑎, 1o⟩ = ⟨𝑏, 1o⟩)
3029eceq1d 6714 . . . . . . . . . . 11 (𝑎 = 𝑏 → [⟨𝑎, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
3130fveq2d 5630 . . . . . . . . . 10 (𝑎 = 𝑏 → (*Q‘[⟨𝑎, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
3231breq2d 4094 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3332abbidv 2347 . . . . . . . 8 (𝑎 = 𝑏 → {𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )})
3431breq1d 4092 . . . . . . . . 9 (𝑎 = 𝑏 → ((*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞))
3534abbidv 2347 . . . . . . . 8 (𝑎 = 𝑏 → {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞})
3633, 35opeq12d 3864 . . . . . . 7 (𝑎 = 𝑏 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)
3728, 36oveq12d 6018 . . . . . 6 (𝑎 = 𝑏 → ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩))
3837breq1d 4092 . . . . 5 (𝑎 = 𝑏 → (((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
3938cbvrexv 2766 . . . 4 (∃𝑎N ((𝐹𝑎) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑎, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑎, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
4027, 39bitri 184 . . 3 (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩ ↔ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩)
4140anbi2i 457 . 2 ((𝑋Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
4215, 41bitri 184 1 (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  2nd c2nd 6283  1oc1o 6553  [cec 6676  Ncnpi 7455   ~Q ceq 7462  Qcnq 7463   +Q cplq 7465  *Qcrq 7467   <Q cltq 7468   +P cpp 7476  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-2nd 6285  df-ec 6680  df-qs 6684  df-ni 7487  df-nqqs 7531
This theorem is referenced by:  caucvgprprlemopu  7882  caucvgprprlemupu  7883  caucvgprprlemdisj  7885  caucvgprprlemloc  7886
  Copyright terms: Public domain W3C validator